dc.creatorCerri, Ricardo
dc.creatorBarros, Rodrigo Coelho
dc.creatorCarvalho, André Carlos Ponce de Leon Ferreira de
dc.date.accessioned2014-04-14T17:43:46Z
dc.date.accessioned2018-07-04T16:43:49Z
dc.date.available2014-04-14T17:43:46Z
dc.date.available2018-07-04T16:43:49Z
dc.date.created2014-04-14T17:43:46Z
dc.date.issued2014-02
dc.identifierJournal of Computer and System Sciences, San Diego, v.80, n.1, p.39-56, 2014
dc.identifierhttp://www.producao.usp.br/handle/BDPI/44503
dc.identifier10.1016/j.jcss.2013.03.007
dc.identifierhttp://dx.doi.org/10.1016/j.jcss.2013.03.007
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1639576
dc.description.abstractHierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.
dc.languageeng
dc.publisherElsevier
dc.publisherAcademic Press
dc.publisherSan Diego
dc.relationJournal of Computer and System Sciences
dc.rightsCopyright Elsevier
dc.rightsrestrictedAccess
dc.subjectHierarchical multi-label classification
dc.subjectNeural networks
dc.subjectLocal classification method
dc.titleHierarchical multi-label classification using local neural networks
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución