dc.creatorBasgalupp, Márcio P.
dc.creatorBarros, Rodrigo Coelho
dc.creatorCarvalho, André Carlos Ponce de Leon Ferreira de
dc.creatorFreitas, Alex A.
dc.date.accessioned2014-04-22T14:00:50Z
dc.date.accessioned2018-07-04T16:43:49Z
dc.date.available2014-04-22T14:00:50Z
dc.date.available2018-07-04T16:43:49Z
dc.date.created2014-04-22T14:00:50Z
dc.date.issued2014-02-10
dc.identifierInformation Sciences, New York, v.258, p.160-181, 2014
dc.identifierhttp://www.producao.usp.br/handle/BDPI/44564
dc.identifier10.1016/j.ins.2013.07.025
dc.identifierhttp://dx.doi.org/10.1016/j.ins.2013.07.025
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1639575
dc.description.abstractDecision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, traditional decision-tree induction algorithms implement a greedy approach for node splitting that is inherently susceptible to local optima convergence. Evolutionary algorithms can avoid the problems associated with a greedy search and have been successfully employed to the induction of decision trees. Previously, we proposed a lexicographic multi-objective genetic algorithm for decision-tree induction, named LEGAL-Tree. In this work, we propose extending this approach substantially, particularly w.r.t. two important evolutionary aspects: the initialization of the population and the fitness function. We carry out a comprehensive set of experiments to validate our extended algorithm. The experimental results suggest that it is able to outperform both traditional algorithms for decision-tree induction and another evolutionary algorithm in a variety of application domains.
dc.languageeng
dc.publisherElsevier
dc.publisherNew York
dc.relationInformation Sciences
dc.rightsCopyright Elsevier
dc.rightsrestrictedAccess
dc.subjectDecision tree
dc.subjectLexicographic optimization
dc.subjectMachine learning
dc.subjectMulti-objective evolutionary algorithm
dc.titleEvolving decision trees with beam search-based initialization and lexicographic multi-objective evaluation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución