dc.creatorAzevedo, D.
dc.creatorMenegatto, Valdir Antonio
dc.date.accessioned2014-02-21T17:08:09Z
dc.date.accessioned2018-07-04T16:42:43Z
dc.date.available2014-02-21T17:08:09Z
dc.date.available2018-07-04T16:42:43Z
dc.date.created2014-02-21T17:08:09Z
dc.date.issued2014-01
dc.identifierJournal of Approximation Theory, San Diego, v.177, p.57-68, 2014
dc.identifierhttp://www.producao.usp.br/handle/BDPI/44032
dc.identifier10.1016/j.jat.2013.10.002
dc.identifierhttp://dx.doi.org/10.1016/j.jat.2013.10.002
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1639320
dc.description.abstractWe obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.
dc.languageeng
dc.publisherAcademic Press
dc.publisherElsevier
dc.publisherSan Diego
dc.relationJournal of Approximation Theory
dc.rightsCopyright Elsevier
dc.rightsrestrictedAccess
dc.subjectSphere
dc.subjectIntegral operators
dc.subjectEigenvalue estimates
dc.subjectDot product kernels
dc.subjectGaussian kernel
dc.titleSharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución