dc.creator | Azevedo, D. | |
dc.creator | Menegatto, Valdir Antonio | |
dc.date.accessioned | 2014-02-21T17:08:09Z | |
dc.date.accessioned | 2018-07-04T16:42:43Z | |
dc.date.available | 2014-02-21T17:08:09Z | |
dc.date.available | 2018-07-04T16:42:43Z | |
dc.date.created | 2014-02-21T17:08:09Z | |
dc.date.issued | 2014-01 | |
dc.identifier | Journal of Approximation Theory, San Diego, v.177, p.57-68, 2014 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/44032 | |
dc.identifier | 10.1016/j.jat.2013.10.002 | |
dc.identifier | http://dx.doi.org/10.1016/j.jat.2013.10.002 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1639320 | |
dc.description.abstract | We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to
describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex
versions of our results to cover the cases when the sphere sits in a Hermitian space. | |
dc.language | eng | |
dc.publisher | Academic Press | |
dc.publisher | Elsevier | |
dc.publisher | San Diego | |
dc.relation | Journal of Approximation Theory | |
dc.rights | Copyright Elsevier | |
dc.rights | restrictedAccess | |
dc.subject | Sphere | |
dc.subject | Integral operators | |
dc.subject | Eigenvalue estimates | |
dc.subject | Dot product kernels | |
dc.subject | Gaussian kernel | |
dc.title | Sharp estimates for eigenvalues of integral operators
generated by dot product kernels on the sphere | |
dc.type | Artículos de revistas | |