dc.creatorMenegatto, Valdir Antonio
dc.date.accessioned2014-02-21T17:12:51Z
dc.date.accessioned2018-07-04T16:42:33Z
dc.date.available2014-02-21T17:12:51Z
dc.date.available2018-07-04T16:42:33Z
dc.date.created2014-02-21T17:12:51Z
dc.date.issued2014-04-01
dc.identifierJournal of Mathematical Analysis and Applications, San Diego, v.412, n.1, p.189-199, 2014
dc.identifierhttp://www.producao.usp.br/handle/BDPI/44033
dc.identifier10.1016/j.jmaa.2013.10.057
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2013.10.057
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1639278
dc.description.abstractWe prove that any continuous function with domain {z ∈ C: |z| ≤ 1} that generates a bizonal positive definite kernel on the unit sphere in 'C POT.Q' , q ⩾ 3, is continuously differentiable in {z ∈ C: |z| < 1} up to order q − 2, with respect to both z and 'Z BARRA'. In particular, the partial derivatives of the function with respect to x = Re z and y = Im z exist and are continuous in {z ∈ C: |z| < 1} up to the same order.
dc.languageeng
dc.publisherAcademic Press
dc.publisherElsevier
dc.publisherSan Diego
dc.relationJournal of Mathematical Analysis and Applications
dc.rightsCopyright Elsevier
dc.rightsrestrictedAccess
dc.subjectDifferentiability
dc.subjectPositive definite kernels and functions
dc.subjectSphere
dc.subjectBizonal kernels
dc.titleDifferentiability of bizonal positive definite kernels on complex spheres
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución