Artículos de revistas
Redes neurais artificiais na previsão da inflação: aplicação como ferramenta de apoio à análise de decisões financeiras em organizações de pequeno porte
Artificial neural networks in inflation prediction: application like analysis tool for financial decisions at small organizations;
Redes neuronales artificiales en el pronóstico de la inflación: la aplicación como una herramienta para apoyar el análisis de las decisiones financieras en organizaciones pequeñas
Fecha
2012Registro en:
RAM, Rev. Adm. Mackenzie,v.13,n.1,p.68-86,2012
1678-6971
10.1590/S1678-69712012000100004
Autor
Terra, Leonardo Augusto Amaral
Passador, João Luiz
Institución
Resumen
As estimações das taxas de inflação são de fundamental importância para os gestores, pois as decisões de investimento estão intimamente ligadas a elas. Contudo, o comportamento inflacionário tende a ser não linear e até mesmo caótico, tornando difícil a sua correta estimação. Essa característica do fenômeno pode tornar imprecisos os modelos mais simples de previsão, acessíveis às pequenas organizações, uma vez que muitos deles necessitam de grandes manipulações de dados e/ou softwares especializados. O presente artigo tem por objetivo avaliar, por meio de análise formal estatística, a eficácia das redes neurais artificiais (RNA) na previsão da inflação, dentro da realidade de organizações de pequeno porte. As RNA são ferramentas adequadas para mensurar os fenômenos inflacionários, por se tratar de aproximações de funções polinomiais, capazes de lidar com fenômenos não lineares. Para esse processo, foram selecionados três modelos básicos de redes neurais artificiais Multi Layer Perceptron, passíveis de implementação a partir de planilhas eletrônicas de código aberto. Os três modelos foram testados a partir de um conjunto de variáveis independentes sugeridas por Bresser-Pereira e Nakano (1984), com defasagem de um, seis e doze meses. Para tal, foram utilizados testes de Wilcoxon, coeficiente de determinação R² e o percentual de erro médio dos modelos. O conjunto de dados foi dividido em dois, sendo um grupo usado para treinamento das redes neurais artificiais, enquanto outro grupo era utilizado para verificar a capacidade de predição dos modelos e sua capacidade de generalização. Com isso, o trabalho concluiu que determinados modelos de redes neurais artificiais têm uma razoável capacidade de predição da inflação no curto prazo e se constituem em uma alternativa razoável para esse tipo de mensuração.