dc.creatorChandel, Anuj K.
dc.creatorAntunes, Felipe Antonio Fernandes
dc.creatorAnjos, Virgilio 
dc.creatorBell, Maria J. V. 
dc.creatorRodrigues, Leonarde N.
dc.creatorSingh, Om V.
dc.creatorRosa, Carlos A.
dc.creatorPagnocca, Fernando C.
dc.creatorSilva, Silvio Silverio da
dc.date.accessioned2013-10-14T17:54:19Z
dc.date.accessioned2018-07-04T16:30:37Z
dc.date.available2013-10-14T17:54:19Z
dc.date.available2018-07-04T16:30:37Z
dc.date.created2013-10-14T17:54:19Z
dc.date.issued2013
dc.identifierBiotechnology for Biofuels, London, v.6, p.1-15, 2013
dc.identifier1754-6834
dc.identifierhttp://www.producao.usp.br/handle/BDPI/34927
dc.identifier10.1186/1754-6834-6-4
dc.identifierhttp://www.biotechnologyforbiofuels.com/content/6/1/4
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1636571
dc.description.abstractBackground Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform–near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases’ ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level.
dc.languageeng
dc.publisherBioMed Central
dc.publisherLondon
dc.relationBiotechnology for Biofuels
dc.rightsChandel et al; licensee BioMed Central Ltd. - This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.rightsopenAccess
dc.titleUltra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución