dc.creatorAlvares-Cherman, Everton
dc.creatorMetz, Jean
dc.creatorMonard, Maria Carolina
dc.date.accessioned2013-10-21T10:38:33Z
dc.date.accessioned2018-07-04T16:25:59Z
dc.date.available2013-10-21T10:38:33Z
dc.date.available2018-07-04T16:25:59Z
dc.date.created2013-10-21T10:38:33Z
dc.date.issued2012
dc.identifierEXPERT SYSTEMS WITH APPLICATIONS, OXFORD, v. 39, n. 2, pp. 1647-1655, FEB 1, 2012
dc.identifier0957-4174
dc.identifierhttp://www.producao.usp.br/handle/BDPI/35214
dc.identifier10.1016/j.eswa.2011.06.056
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2011.06.056
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1635769
dc.description.abstractIn multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.
dc.languageeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.publisherOXFORD
dc.relationEXPERT SYSTEMS WITH APPLICATIONS
dc.rightsCopyright PERGAMON-ELSEVIER SCIENCE LTD
dc.rightsrestrictedAccess
dc.subjectMACHINE LEARNING
dc.subjectMULTI-LABEL CLASSIFICATION
dc.subjectBINARY RELEVANCE
dc.subjectLABEL DEPENDENCY
dc.titleIncorporating label dependency into the binary relevance framework for multi-label classification
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución