dc.creatorLouzada, Francisco
dc.creatorAra, Anderson
dc.date.accessioned2013-10-21T13:50:46Z
dc.date.accessioned2018-07-04T16:25:57Z
dc.date.available2013-10-21T13:50:46Z
dc.date.available2018-07-04T16:25:57Z
dc.date.created2013-10-21T13:50:46Z
dc.date.issued2012
dc.identifierEXPERT SYSTEMS WITH APPLICATIONS, OXFORD, v. 39, n. 14, supl. 1, Part 1, pp. 11583-11592, OCT 15, 2012
dc.identifier0957-4174
dc.identifierhttp://www.producao.usp.br/handle/BDPI/35382
dc.identifier10.1016/j.eswa.2012.04.024
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2012.04.024
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1635761
dc.description.abstractFraud is a global problem that has required more attention due to an accentuated expansion of modern technology and communication. When statistical techniques are used to detect fraud, whether a fraud detection model is accurate enough in order to provide correct classification of the case as a fraudulent or legitimate is a critical factor. In this context, the concept of bootstrap aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the adjusted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper, for the first time, we aim to present a pioneer study of the performance of the discrete and continuous k-dependence probabilistic networks within the context of bagging predictors classification. Via a large simulation study and various real datasets, we discovered that the probabilistic networks are a strong modeling option with high predictive capacity and with a high increment using the bagging procedure when compared to traditional techniques. (C) 2012 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.publisherOXFORD
dc.relationEXPERT SYSTEMS WITH APPLICATIONS
dc.rightsCopyright PERGAMON-ELSEVIER SCIENCE LTD
dc.rightsclosedAccess
dc.subjectFRAUD DETECTION
dc.subjectPROBABILISTIC NETWORKS
dc.subjectBAYESIAN NETWORKS
dc.subjectCLASSIFICATION MODELS
dc.subjectBAGGING
dc.subjectPREDICTIVE PERFORMANCE
dc.titleBagging k-dependence probabilistic networks: An alternative powerful fraud detection tool
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución