dc.creatorPewsey, Arthur
dc.creatorGomez, Hector W.
dc.creatorBolfarine, Heleno
dc.date.accessioned2013-11-05T15:41:25Z
dc.date.accessioned2018-07-04T16:25:29Z
dc.date.available2013-11-05T15:41:25Z
dc.date.available2018-07-04T16:25:29Z
dc.date.created2013-11-05T15:41:25Z
dc.date.issued2012
dc.identifierTEST, NEW YORK, v. 21, n. 4, supl. 1, Part 1, pp. 775-789, DEC, 2012
dc.identifier1133-0686
dc.identifierhttp://www.producao.usp.br/handle/BDPI/41719
dc.identifier10.1007/s11749-011-0280-0
dc.identifierhttp://dx.doi.org/10.1007/s11749-011-0280-0
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1635655
dc.description.abstractThis paper considers likelihood-based inference for the family of power distributions. Widely applicable results are presented which can be used to conduct inference for all three parameters of the general location-scale extension of the family. More specific results are given for the special case of the power normal model. The analysis of a large data set, formed from density measurements for a certain type of pollen, illustrates the application of the family and the results for likelihood-based inference. Throughout, comparisons are made with analogous results for the direct parametrisation of the skew-normal distribution.
dc.languageeng
dc.publisherSPRINGER
dc.publisherNEW YORK
dc.relationTEST
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectGENERALISED GAUSSIAN DISTRIBUTION
dc.subjectKURTOSIS
dc.subjectLEHMANN ALTERNATIVES
dc.subjectPOWER NORMAL MODEL
dc.subjectSKEW-NORMAL DISTRIBUTION
dc.subjectSKEWNESS
dc.titleLikelihood-based inference for power distributions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución