dc.creatorAusas, Roberto Federico
dc.creatorBuscaglia, Gustavo Carlos
dc.creatorIdelsohn, Sergio Rodolfo
dc.date.accessioned2013-11-01T11:21:29Z
dc.date.accessioned2018-07-04T16:25:10Z
dc.date.available2013-11-01T11:21:29Z
dc.date.available2018-07-04T16:25:10Z
dc.date.created2013-11-01T11:21:29Z
dc.date.issued2012
dc.identifierInternational Journal for Numerical Methods in Fluids, Hoboken, v. 70, n. 7, supl. 1, Part 2, p. 829-850, 40483, 2012
dc.identifier0271-2091
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37389
dc.identifier10.1002/fld.2713
dc.identifierhttp://dx.doi.org/10.1002/fld.2713
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1635588
dc.description.abstractIn this work, a new enrichment space to accommodate jumps in the pressure field at immersed interfaces in finite element formulations, is proposed. The new enrichment adds two degrees of freedom per element that can be eliminated by means of static condensation. The new space is tested and compared with the classical P1 space and to the space proposed by Ausas et al (Comp. Meth. Appl. Mech. Eng., Vol. 199, 10191031, 2010) in several problems involving jumps in the viscosity and/or the presence of singular forces at interfaces not conforming with the element edges. The combination of this enrichment space with another enrichment that accommodates discontinuities in the pressure gradient has also been explored, exhibiting excellent results in problems involving jumps in the density or the volume forces. Copyright (c) 2011 John Wiley & Sons, Ltd.
dc.languageeng
dc.publisherWiley-Blackwell
dc.publisherHoboken
dc.relationInternational Journal for Numerical Methods in Fluids
dc.rightsCopyright Wiley-Blackwell
dc.rightsclosedAccess
dc.subjectMULTI-FLUIDS
dc.subjectTWO-PHASE FLOWS
dc.subjectEMBEDDED INTERFACES
dc.subjectFINITE ELEMENT METHOD
dc.subjectSURFACE TENSION
dc.subjectDISCONTINUOUS PRESSURES
dc.subjectKINKS
dc.titleA new enrichment space for the treatment of discontinuous pressures in multi-fluid flows
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución