dc.creatorFutorny, Vyacheslav
dc.creatorHartwig, Jonas T.
dc.date.accessioned2013-10-14T18:59:39Z
dc.date.accessioned2018-07-04T16:24:24Z
dc.date.available2013-10-14T18:59:39Z
dc.date.available2018-07-04T16:24:24Z
dc.date.created2013-10-14T18:59:39Z
dc.date.issued2012-05-01
dc.identifierJOURNAL OF ALGEBRA, SAN DIEGO, v. 357, pp. 69-93, MAY 1, 2012
dc.identifier0021-8693
dc.identifierhttp://www.producao.usp.br/handle/BDPI/35046
dc.identifier10.1016/j.jalgebra.2011.11.004
dc.identifierhttp://dx.doi.org/10.1016/j.jalgebra.2011.11.004
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1635415
dc.description.abstractWe introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's q-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs up to isomorphism over a class of twisted generalized Weyl algebras which includes the multiparameter twisted Weyl algebras. (C) 2011 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.publisherSAN DIEGO
dc.relationJournal of Algebra
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectQUANTIZED WEYL ALGEBRA
dc.subjectGENERALIZED WEYL ALGEBRA
dc.subjectSIMPLE RING
dc.subjectWHITTAKER MODULE
dc.subjectIRREDUCIBLE REPRESENTATION
dc.titleMultiparameter twisted Weyl algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución