dc.creatorBirgin, Ernesto G.
dc.creatorFernandez, Damian
dc.creatorMartinez, J. M.
dc.date.accessioned2013-11-07T12:35:35Z
dc.date.accessioned2018-07-04T16:23:24Z
dc.date.available2013-11-07T12:35:35Z
dc.date.available2018-07-04T16:23:24Z
dc.date.created2013-11-07T12:35:35Z
dc.date.issued2012
dc.identifierOPTIMIZATION METHODS & SOFTWARE, ABINGDON, v. 27, n. 6, supl. 1, Part 3, pp. 1001-1024, AUG, 2012
dc.identifier1055-6788
dc.identifierhttp://www.producao.usp.br/handle/BDPI/43320
dc.identifier10.1080/10556788.2011.556634
dc.identifierhttp://dx.doi.org/10.1080/10556788.2011.556634
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1635203
dc.description.abstractAugmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
dc.languageeng
dc.publisherTAYLOR & FRANCIS LTD
dc.publisherABINGDON
dc.relationOPTIMIZATION METHODS & SOFTWARE
dc.rightsCopyright TAYLOR & FRANCIS LTD
dc.rightsclosedAccess
dc.subjectNONLINEAR PROGRAMMING
dc.subjectAUGMENTED LAGRANGIAN METHODS
dc.subjectPENALTY PARAMETERS
dc.subjectNUMERICAL EXPERIMENTS
dc.titleThe boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución