dc.creatorKrikun, Maxim
dc.creatorYambartsev, Anatoly
dc.date.accessioned2013-11-07T10:18:01Z
dc.date.accessioned2018-07-04T16:22:44Z
dc.date.available2013-11-07T10:18:01Z
dc.date.available2018-07-04T16:22:44Z
dc.date.created2013-11-07T10:18:01Z
dc.date.issued2012
dc.identifierJOURNAL OF STATISTICAL PHYSICS, NEW YORK, v. 148, n. 3, pp. 422-439, AUG, 2012
dc.identifier0022-4715
dc.identifierhttp://www.producao.usp.br/handle/BDPI/42890
dc.identifier10.1007/s10955-012-0548-0
dc.identifierhttp://dx.doi.org/10.1007/s10955-012-0548-0
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1635049
dc.description.abstractThe ferromagnetic Ising model without external field on an infinite Lorentzian triangulation sampled from the uniform distribution is considered. We prove uniqueness of the Gibbs measure in the high temperature region and coexistence of at least two Gibbs measures at low temperature. The proofs are based on the disagreement percolation method and on a variant of the Peierls contour method. The critical temperature is shown to be constant a.s.
dc.languageeng
dc.publisherSPRINGER
dc.publisherNEW YORK
dc.relationJOURNAL OF STATISTICAL PHYSICS
dc.rightsCopyright SPRINGER
dc.rightsclosedAccess
dc.subjectLORENTZIAN TRIANGULATION
dc.subjectISING MODEL
dc.subjectDYNAMICAL TRIANGULATION
dc.subjectQUANTUM GRAVITY
dc.titlePhase Transition for the Ising Model on the Critical Lorentzian Triangulation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución