dc.creatorSartorelli, Jose Carlos
dc.creatorLacarbonara, Walter
dc.date.accessioned2013-11-06T15:39:58Z
dc.date.accessioned2018-07-04T16:22:31Z
dc.date.available2013-11-06T15:39:58Z
dc.date.available2018-07-04T16:22:31Z
dc.date.created2013-11-06T15:39:58Z
dc.date.issued2012
dc.identifierNONLINEAR DYNAMICS, DORDRECHT, v. 69, n. 4, supl. 1, Part 2, pp. 1679-1692, SEP, 2012
dc.identifier0924-090X
dc.identifierhttp://www.producao.usp.br/handle/BDPI/42226
dc.identifier10.1007/s11071-012-0378-2
dc.identifierhttp://dx.doi.org/10.1007/s11071-012-0378-2
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1635005
dc.description.abstractTwo parametrically-induced phenomena are addressed in the context of a double pendulum subject to a vertical base excitation. First, the parametric resonances that cause the stable downward vertical equilibrium to bifurcate into large-amplitude periodic solutions are investigated extensively. Then the stabilization of the unstable upward equilibrium states through the parametric action of the high-frequency base motion is documented in the experiments and in the simulations. It is shown that there is a region in the plane of the excitation frequency and amplitude where all four unstable equilibrium states can be stabilized simultaneously in the double pendulum. The parametric resonances of the two modes of the base-excited double pendulum are studied both theoretically and experimentally. The transition curves (i.e., boundaries of the dynamic instability regions) are constructed asymptotically via the method of multiple scales including higher-order effects. The bifurcations characterizing the transitions from the trivial equilibrium to the periodic solutions are computed by either continuation methods and or by time integration and compared with the theoretical and experimental results.
dc.languageeng
dc.publisherSPRINGER
dc.publisherDORDRECHT
dc.relationNONLINEAR DYNAMICS
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectDOUBLE PENDULUM
dc.subjectPARAMETRIC RESONANCE
dc.subjectTRANSITION CURVES
dc.subjectMETHOD OF MULTIPLE SCALES
dc.subjectHIGH-FREQUENCY EXCITATION
dc.titleParametric resonances in a base-excited double pendulum
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución