dc.creatorFerreira, Carlos E.
dc.creatorGuenther, Ute
dc.creatorMartin, Alexander
dc.date.accessioned2013-10-14T12:06:50Z
dc.date.accessioned2018-07-04T16:18:49Z
dc.date.available2013-10-14T12:06:50Z
dc.date.available2018-07-04T16:18:49Z
dc.date.created2013-10-14T12:06:50Z
dc.date.issued2012
dc.identifierSIAM JOURNAL ON OPTIMIZATION, PHILADELPHIA, v. 22, n. 4, supl. 1, Part 3, pp. 1493-1517, JUN, 2012
dc.identifier1052-6234
dc.identifierhttp://www.producao.usp.br/handle/BDPI/34380
dc.identifier10.1137/110853248
dc.identifierhttp://dx.doi.org/10.1137/110853248
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1634246
dc.description.abstractWe deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.
dc.languageeng
dc.publisherSIAM PUBLICATIONS
dc.publisherPHILADELPHIA
dc.relationSIAM JOURNAL ON OPTIMIZATION
dc.rightsCopyright SIAM PUBLICATIONS
dc.rightsrestrictedAccess
dc.subjectMIXED INTEGER PROGRAMMING
dc.subjectCUTTING PLANES
dc.subjectSHEET METAL DESIGN
dc.titleMATHEMATICAL MODELS AND POLYHEDRAL STUDIES FOR INTEGRAL SHEET METAL DESIGN
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución