dc.creatorBorges, Alessandro Santos
dc.creatorAndrade, Maria de Fatima
dc.creatorGuardani, Roberto
dc.date.accessioned2013-10-25T18:04:59Z
dc.date.accessioned2018-07-04T16:18:29Z
dc.date.available2013-10-25T18:04:59Z
dc.date.available2018-07-04T16:18:29Z
dc.date.created2013-10-25T18:04:59Z
dc.date.issued2012
dc.identifierINTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, GENEVA, v. 49, n. 41306, supl. 1, Part 6, pp. 1-15, AUG, 2012
dc.identifier0957-4352
dc.identifierhttp://www.producao.usp.br/handle/BDPI/36108
dc.identifier10.1504/IJEP.2012.049730
dc.identifierhttp://dx.doi.org/10.1504/IJEP.2012.049730
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1634175
dc.description.abstractA neural network model to predict ozone concentration in the Sao Paulo Metropolitan Area was developed, based on average values of meteorological variables in the morning (8:00-12:00 hr) and afternoon (13:00-17: 00 hr) periods. Outputs are the maximum and average ozone concentrations in the afternoon (12:00-17:00 hr). The correlation coefficient between computed and measured values was 0.82 and 0.88 for the maximum and average ozone concentration, respectively. The model presented good performance as a prediction tool for the maximum ozone concentration. For prediction periods from 1 to 5 days 0 to 23% failures (95% confidence) were obtained.
dc.languageeng
dc.publisherINDERSCIENCE ENTERPRISES LTD
dc.publisherGENEVA
dc.relationINTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION
dc.rightsCopyright INDERSCIENCE ENTERPRISES LTD
dc.rightsclosedAccess
dc.subjectOZONE FORECAST
dc.subjectNEURAL NETWORK
dc.subjectAIR POLLUTION IN MEGACITIES
dc.subjectTROPOSPHERIC OZONE
dc.titleGround-level ozone prediction using a neural network model based on meteorological variables and applied to the metropolitan area of Sao Paulo
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución