dc.creatorGollo, Leonardo L.
dc.creatorFilho, Osame Kinouchi
dc.creatorCopelli, Mauro
dc.date.accessioned2013-11-04T11:05:47Z
dc.date.accessioned2018-07-04T16:18:03Z
dc.date.available2013-11-04T11:05:47Z
dc.date.available2018-07-04T16:18:03Z
dc.date.created2013-11-04T11:05:47Z
dc.date.issued2012
dc.identifierPHYSICAL REVIEW E, COLLEGE PK, v. 85, n. 1, supl. 1, Part 1, pp. 10157-10165, 40909, 2012
dc.identifier1539-3755
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37913
dc.identifier10.1103/PhysRevE.85.011911
dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.85.011911
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1634076
dc.description.abstractWe analytically study the input-output properties of a neuron whose active dendritic tree, modeled as a Cayley tree of excitable elements, is subjected to Poisson stimulus. Both single-site and two-site mean-field approximations incorrectly predict a nonequilibrium phase transition which is not allowed in the model. We propose an excitable-wave mean-field approximation which shows good agreement with previously published simulation results [Gollo et al., PLoS Comput. Biol. 5, e1000402 (2009)] and accounts for finite-size effects. We also discuss the relevance of our results to experiments in neuroscience, emphasizing the role of active dendrites in the enhancement of dynamic range and in gain control modulation.
dc.languageeng
dc.publisherAMER PHYSICAL SOC
dc.publisherCOLLEGE PK
dc.relationPHYSICAL REVIEW E
dc.rightsCopyright AMER PHYSICAL SOC
dc.rightsopenAccess
dc.titleStatistical physics approach to dendritic computation: The excitable-wave mean-field approximation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución