dc.creatorSoler, Edilaine Martins
dc.creatorSousa, Vanusa Alves de
dc.creatorCosta, Geraldo Roberto Martins da
dc.date.accessioned2013-11-06T16:29:27Z
dc.date.accessioned2018-07-04T16:16:54Z
dc.date.available2013-11-06T16:29:27Z
dc.date.available2018-07-04T16:16:54Z
dc.date.created2013-11-06T16:29:27Z
dc.date.issued2012
dc.identifierEUROPEAN JOURNAL OF OPERATIONAL RESEARCH, AMSTERDAM, v. 222, n. 3, pp. 616-622, 37196, 2012
dc.identifier0377-2217
dc.identifierhttp://www.producao.usp.br/handle/BDPI/42356
dc.identifier10.1016/j.ejor.2012.05.021
dc.identifierhttp://dx.doi.org/10.1016/j.ejor.2012.05.021
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1633818
dc.description.abstractThe aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.publisherAMSTERDAM
dc.relationEUROPEAN JOURNAL OF OPERATIONAL RESEARCH
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectOR IN ENERGY
dc.subjectOPTIMAL POWER FLOW
dc.subjectINTERIOR POINT METHODS
dc.subjectDISCRETE VARIABLES
dc.subjectNONLINEAR PROGRAMMING
dc.titleA modified Primal-Dual Logarithmic-Barrier Method for solving the Optimal Power Flow problem with discrete and continuous control variables
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución