dc.creator | Hernandez, Michelle Fernanda Pierri | |
dc.date.accessioned | 2013-11-05T10:04:16Z | |
dc.date.accessioned | 2018-07-04T16:15:52Z | |
dc.date.available | 2013-11-05T10:04:16Z | |
dc.date.available | 2018-07-04T16:15:52Z | |
dc.date.created | 2013-11-05T10:04:16Z | |
dc.date.issued | 2012 | |
dc.identifier | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, OXFORD, v. 75, n. 2, supl. 1, Part 2, pp. 651-661, JAN, 2012 | |
dc.identifier | 0362-546X | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/40943 | |
dc.identifier | 10.1016/j.na.2011.08.059 | |
dc.identifier | http://dx.doi.org/10.1016/j.na.2011.08.059 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1633588 | |
dc.description.abstract | Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved. | |
dc.language | eng | |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | |
dc.publisher | OXFORD | |
dc.relation | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS | |
dc.rights | Copyright PERGAMON-ELSEVIER SCIENCE LTD | |
dc.rights | restrictedAccess | |
dc.subject | S-ASYMPTOTICALLY OMEGA-PERIODIC FUNCTION | |
dc.subject | ABSTRACT INTEGRAL EQUATIONS | |
dc.subject | INTEGRO-DIFFERENTIAL EQUATIONS | |
dc.title | On S-asymptotically omega-periodic functions and applications | |
dc.type | Artículos de revistas | |