dc.creatorHernandez, Michelle Fernanda Pierri
dc.date.accessioned2013-11-05T10:04:16Z
dc.date.accessioned2018-07-04T16:15:52Z
dc.date.available2013-11-05T10:04:16Z
dc.date.available2018-07-04T16:15:52Z
dc.date.created2013-11-05T10:04:16Z
dc.date.issued2012
dc.identifierNONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, OXFORD, v. 75, n. 2, supl. 1, Part 2, pp. 651-661, JAN, 2012
dc.identifier0362-546X
dc.identifierhttp://www.producao.usp.br/handle/BDPI/40943
dc.identifier10.1016/j.na.2011.08.059
dc.identifierhttp://dx.doi.org/10.1016/j.na.2011.08.059
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1633588
dc.description.abstractLet (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.publisherOXFORD
dc.relationNONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
dc.rightsCopyright PERGAMON-ELSEVIER SCIENCE LTD
dc.rightsrestrictedAccess
dc.subjectS-ASYMPTOTICALLY OMEGA-PERIODIC FUNCTION
dc.subjectABSTRACT INTEGRAL EQUATIONS
dc.subjectINTEGRO-DIFFERENTIAL EQUATIONS
dc.titleOn S-asymptotically omega-periodic functions and applications
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución