dc.creatorDiniz, M.
dc.creatorPereira, C. A. B.
dc.creatorStern, J. M.
dc.date.accessioned2013-11-05T14:24:23Z
dc.date.accessioned2018-07-04T16:13:03Z
dc.date.available2013-11-05T14:24:23Z
dc.date.available2018-07-04T16:13:03Z
dc.date.created2013-11-05T14:24:23Z
dc.date.issued2012
dc.identifierCOMMUNICATIONS IN STATISTICS-THEORY AND METHODS, PHILADELPHIA, v. 41, n. 19, supl. 1, Part 3, pp. 3562-3574, MAY, 2012
dc.identifier0361-0926
dc.identifierhttp://www.producao.usp.br/handle/BDPI/41512
dc.identifier10.1080/03610926.2011.563021
dc.identifierhttp://dx.doi.org/10.1080/03610926.2011.563021
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1632991
dc.description.abstractTo estimate causal relationships, time series econometricians must be aware of spurious correlation, a problem first mentioned by Yule (1926). To deal with this problem, one can work either with differenced series or multivariate models: VAR (VEC or VECM) models. These models usually include at least one cointegration relation. Although the Bayesian literature on VAR/VEC is quite advanced, Bauwens et al. (1999) highlighted that "the topic of selecting the cointegrating rank has not yet given very useful and convincing results". The present article applies the Full Bayesian Significance Test (FBST), especially designed to deal with sharp hypotheses, to cointegration rank selection tests in VECM time series models. It shows the FBST implementation using both simulated and available (in the literature) data sets. As illustration, standard non informative priors are used.
dc.languageeng
dc.publisherTAYLOR & FRANCIS INC
dc.publisherPHILADELPHIA
dc.relationCOMMUNICATIONS IN STATISTICS-THEORY AND METHODS
dc.rightsCopyright TAYLOR & FRANCIS INC
dc.rightsrestrictedAccess
dc.subjectBAYESIAN INFERENCE
dc.subjectCOINTEGRATION
dc.subjectHYPOTHESIS TESTING
dc.subjectREDUCED RANK REGRESSION
dc.subjectTIME SERIES
dc.titleCointegration: Bayesian Significance Test
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución