dc.creatorThorgilsson, Gunnar
dc.creatorEgues, Jose Carlos
dc.creatorLoss, Daniel
dc.creatorErlingsson, Sigurdur I.
dc.date.accessioned2013-11-04T11:16:07Z
dc.date.accessioned2018-07-04T16:12:25Z
dc.date.available2013-11-04T11:16:07Z
dc.date.available2018-07-04T16:12:25Z
dc.date.created2013-11-04T11:16:07Z
dc.date.issued2012
dc.identifierPHYSICAL REVIEW B, COLLEGE PK, v. 85, n. 4, supl. 1, Part 6, pp. 4184-4190, 39814, 2012
dc.identifier1098-0121
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37935
dc.identifier10.1103/PhysRevB.85.045306
dc.identifierhttp://dx.doi.org/10.1103/PhysRevB.85.045306
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1632842
dc.description.abstractIn this work, we study the effects of a longitudinal periodic potential on a parabolic quantum wire defined in a two-dimensional electron gas with Rashba spin-orbit interaction. For an infinite wire superlattice we find, by direct diagonalization, that the energy gaps are shifted away from the usual Bragg planes due to the Rashba spin-orbit interaction. Interestingly, our results show that the location of the band gaps in energy can be controlled via the strength of the Rashba spin-orbit interaction. We have also calculated the charge conductance through a periodic potential of a finite length via the nonequilibrium Green's function method combined with the Landauer formalism. We find dips in the conductance that correspond well to the energy gaps of the infinite wire superlattice. From the infinite wire energy dispersion, we derive an equation relating the location of the conductance dips as a function of the (gate controllable) Fermi energy to the Rashba spin-orbit coupling strength. We propose that the strength of the Rashba spin-orbit interaction can be extracted via a charge conductance measurement.
dc.languageeng
dc.publisherAMER PHYSICAL SOC
dc.publisherCOLLEGE PK
dc.relationPHYSICAL REVIEW B
dc.rightsCopyright AMER PHYSICAL SOC
dc.rightsopenAccess
dc.titleRashba spin-orbit interaction in a superlattice of quantum wires
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución