dc.creatorGorska, K.
dc.creatorPenson, K. A.
dc.date.accessioned2013-11-05T10:22:41Z
dc.date.accessioned2018-07-04T16:11:02Z
dc.date.available2013-11-05T10:22:41Z
dc.date.available2018-07-04T16:11:02Z
dc.date.created2013-11-05T10:22:41Z
dc.date.issued2012
dc.identifierJOURNAL OF MATHEMATICAL PHYSICS, MELVILLE, v. 53, n. 5, supl. 1, Part 3, pp. 4653-4672, MAY, 2012
dc.identifier0022-2488
dc.identifierhttp://www.producao.usp.br/handle/BDPI/40994
dc.identifier10.1063/1.4709443
dc.identifierhttp://dx.doi.org/10.1063/1.4709443
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1632530
dc.description.abstractWe present a method of generation of exact and explicit forms of one-sided, heavy-tailed Levy stable probability distributions g(alpha)(x), 0 <= x < infinity, 0 < alpha < 1. We demonstrate that the knowledge of one such a distribution g a ( x) suffices to obtain exactly g(alpha)p ( x), p = 2, 3, .... Similarly, from known g(alpha)(x) and g(beta)(x), 0 < alpha, beta < 1, we obtain g(alpha beta)( x). The method is based on the construction of the integral operator, called Levy transform, which implements the above operations. For a rational, alpha = l/k with l < k, we reproduce in this manner many of the recently obtained exact results for g(l/k)(x). This approach can be also recast as an application of the Efros theorem for generalized Laplace convolutions. It relies solely on efficient definite integration. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4709443]
dc.languageeng
dc.publisherAMER INST PHYSICS
dc.publisherMELVILLE
dc.relationJOURNAL OF MATHEMATICAL PHYSICS
dc.rightsCopyright AMER INST PHYSICS
dc.rightsrestrictedAccess
dc.titleLevy stable distributions via associated integral transform
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución