dc.creatorBienzobaz, P. F.
dc.creatorSalinas, Silvio Roberto de Azevedo
dc.date.accessioned2013-11-04T11:25:57Z
dc.date.accessioned2018-07-04T16:10:34Z
dc.date.available2013-11-04T11:25:57Z
dc.date.available2018-07-04T16:10:34Z
dc.date.created2013-11-04T11:25:57Z
dc.date.issued2012
dc.identifierPHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, AMSTERDAM, v. 391, n. 24, supl., Part 3, pp. 6399-6408, DEC 15, 2012
dc.identifier0378-4371
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37981
dc.identifier10.1016/j.physa.2012.07.027
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2012.07.027
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1632428
dc.description.abstractWe analyse the phase diagram of a quantum mean spherical model in terms of the temperature T, a quantum parameter g, and the ratio p = -J(2)/J(1) where J(1) > 0 refers to ferromagnetic interactions between first-neighbour sites along the d directions of a hypercubic lattice, and J(2) < 0 is associated with competing anti ferromagnetic interactions between second neighbours along m <= d directions. We regain a number of known results for the classical version of this model, including the topology of the critical line in the g = 0 space, with a Lifshitz point at p = 1/4, for d > 2, and closed-form expressions for the decay of the pair correlations in one dimension. In the T = 0 phase diagram, there is a critical border, g(c) = g(c) (p) for d >= 2, with a singularity at the Lifshitz point if d < (m + 4)/2. We also establish upper and lower critical dimensions, and analyse the quantum critical behavior in the neighborhood of p = 1/4. 2012 (C) Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.publisherAMSTERDAM
dc.relationPHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsclosedAccess
dc.subjectSPHERICAL MODEL
dc.subjectCOMPETING INTERACTIONS
dc.subjectLIFSHITZ POINT
dc.subjectQUANTUM SPHERICAL MODEL
dc.subjectQUANTUM PHASE TRANSITIONS
dc.titleQuantum spherical model with competing interactions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución