dc.creatorMassa, Eugenio Tommaso
dc.creatorUbilla, Pedro
dc.date.accessioned2013-11-04T11:25:53Z
dc.date.accessioned2018-07-04T16:09:40Z
dc.date.available2013-11-04T11:25:53Z
dc.date.available2018-07-04T16:09:40Z
dc.date.created2013-11-04T11:25:53Z
dc.date.issued2013-08-02
dc.identifierCOMMUNICATIONS IN CONTEMPORARY MATHEMATICS, SINGAPORE, v. 14, n. 1, pp. 1250001-1-1250001-21, FEB, 2012
dc.identifier0219-1997
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37980
dc.identifier10.1142/S0219199712500010
dc.identifierhttp://dx.doi.org/10.1142/S0219199712500010
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1632226
dc.description.abstractVia variational methods, we study multiplicity of solutions for the problem {-Delta u = lambda b(x)vertical bar u vertical bar(q-2)u + au + g(x, u) in Omega, u - 0 on partial derivative Omega, where a simple example for g( x, u) is |u|(p-2)u; here a, lambda are real parameters, 1 < q < 2 < p <= 2* and b(x) is a function in a suitable space L-sigma. We obtain a class of sign changing coefficients b(x) for which two non-negative solutions exist for any lambda > 0, and a total of five nontrivial solutions are obtained when lambda is small and a >= lambda(1). Note that this type of results are valid even in the critical case.
dc.languageeng
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD
dc.publisherSINGAPORE
dc.relationCOMMUNICATIONS IN CONTEMPORARY MATHEMATICS
dc.rightsCopyright WORLD SCIENTIFIC PUBL CO PTE LTD
dc.rightsrestrictedAccess
dc.subjectMULTIPLICITY OF SOLUTIONS
dc.subjectVARIATIONAL METHODS
dc.subjectSUBCRITICAL AND CRITICAL GROWTH
dc.subjectCONCAVE-CONVEX NONLINEARITY
dc.subjectSIGN CHANGING COEFFICIENTS
dc.titleSUPERLINEAR ELLIPTIC PROBLEMS WITH SIGN CHANGING COEFFICIENTS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución