dc.creator | Massa, Eugenio Tommaso | |
dc.creator | Ubilla, Pedro | |
dc.date.accessioned | 2013-11-04T11:25:53Z | |
dc.date.accessioned | 2018-07-04T16:09:40Z | |
dc.date.available | 2013-11-04T11:25:53Z | |
dc.date.available | 2018-07-04T16:09:40Z | |
dc.date.created | 2013-11-04T11:25:53Z | |
dc.date.issued | 2013-08-02 | |
dc.identifier | COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, SINGAPORE, v. 14, n. 1, pp. 1250001-1-1250001-21, FEB, 2012 | |
dc.identifier | 0219-1997 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/37980 | |
dc.identifier | 10.1142/S0219199712500010 | |
dc.identifier | http://dx.doi.org/10.1142/S0219199712500010 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1632226 | |
dc.description.abstract | Via variational methods, we study multiplicity of solutions for the problem {-Delta u = lambda b(x)vertical bar u vertical bar(q-2)u + au + g(x, u) in Omega, u - 0 on partial derivative Omega, where a simple example for g( x, u) is |u|(p-2)u; here a, lambda are real parameters, 1 < q < 2 < p <= 2* and b(x) is a function in a suitable space L-sigma. We obtain a class of sign changing coefficients b(x) for which two non-negative solutions exist for any lambda > 0, and a total of five nontrivial solutions are obtained when lambda is small and a >= lambda(1). Note that this type of results are valid even in the critical case. | |
dc.language | eng | |
dc.publisher | WORLD SCIENTIFIC PUBL CO PTE LTD | |
dc.publisher | SINGAPORE | |
dc.relation | COMMUNICATIONS IN CONTEMPORARY MATHEMATICS | |
dc.rights | Copyright WORLD SCIENTIFIC PUBL CO PTE LTD | |
dc.rights | restrictedAccess | |
dc.subject | MULTIPLICITY OF SOLUTIONS | |
dc.subject | VARIATIONAL METHODS | |
dc.subject | SUBCRITICAL AND CRITICAL GROWTH | |
dc.subject | CONCAVE-CONVEX NONLINEARITY | |
dc.subject | SIGN CHANGING COEFFICIENTS | |
dc.title | SUPERLINEAR ELLIPTIC PROBLEMS WITH SIGN CHANGING COEFFICIENTS | |
dc.type | Artículos de revistas | |