dc.creatorFarias, Rafael B. A.
dc.creatorBranco, Marcia D.
dc.date.accessioned2013-11-04T11:16:40Z
dc.date.accessioned2018-07-04T16:09:28Z
dc.date.available2013-11-04T11:16:40Z
dc.date.available2018-07-04T16:09:28Z
dc.date.created2013-11-04T11:16:40Z
dc.date.issued2012
dc.identifierBRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, SAO PAULO, v. 26, n. 4, supl. 1, Part 1, pp. 344-357, NOV, 2012
dc.identifier0103-0752
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37943
dc.identifier10.1214/11-BJPS143
dc.identifierhttp://dx.doi.org/10.1214/11-BJPS143
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1632179
dc.description.abstractModel diagnostics is an integral part of model determination and an important part of the model diagnostics is residual analysis. We adapt and implement residuals considered in the literature for the probit, logistic and skew-probit links under binary regression. New latent residuals for the skew-probit link are proposed here. We have detected the presence of outliers using the residuals proposed here for different models in a simulated dataset and a real medical dataset.
dc.languageeng
dc.publisherBRAZILIAN STATISTICAL ASSOCIATION
dc.publisherSAO PAULO
dc.relationBRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS
dc.rightsCopyright BRAZILIAN STATISTICAL ASSOCIATION
dc.rightsclosedAccess
dc.subjectBINARY REGRESSION
dc.subjectMCMC ALGORITHM
dc.subjectRESIDUAL ANALYSIS
dc.subjectSKEW-PROBIT MODELS
dc.titleLatent residual analysis in binary regression with skewed link
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución