dc.creatorBremner, Murray R.
dc.creatorPeresi, Luiz A.
dc.creatorSanchez-Ortega, Juana
dc.date.accessioned2013-11-04T10:48:42Z
dc.date.accessioned2018-07-04T16:09:22Z
dc.date.available2013-11-04T10:48:42Z
dc.date.available2018-07-04T16:09:22Z
dc.date.created2013-11-04T10:48:42Z
dc.date.issued2013-08-02
dc.identifierLINEAR & MULTILINEAR ALGEBRA, ABINGDON, v. 60, n. 10, supl. 1, Part 3, pp. 1125-1141, 42005, 2012
dc.identifier0308-1087
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37855
dc.identifier10.1080/03081087.2011.651721
dc.identifierhttp://dx.doi.org/10.1080/03081087.2011.651721
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1632150
dc.description.abstractWe apply Kolesnikov's algorithm to obtain a variety of nonassociative algebras defined by right anticommutativity and a "noncommutative" version of the Malcev identity. We use computer algebra to verify that these identities are equivalent to the identities of degree up to 4 satisfied by the dicommutator in every alternative dialgebra. We extend these computations to show that any special identity for Malcev dialgebras must have degree at least 7. Finally, we introduce a trilinear operation which makes any Malcev dialgebra into a Leibniz triple system.
dc.languageeng
dc.publisherTAYLOR & FRANCIS LTD
dc.publisherABINGDON
dc.relationLINEAR & MULTILINEAR ALGEBRA
dc.rightsCopyright TAYLOR & FRANCIS LTD
dc.rightsrestrictedAccess
dc.subjectNONASSOCIATIVE ALGEBRA
dc.subjectCOMPUTER ALGEBRA
dc.subjectDIALGEBRAS
dc.subjectTRILINEAR OPERATIONS
dc.titleMalcev dialgebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución