dc.creator | Bremner, Murray R. | |
dc.creator | Peresi, Luiz A. | |
dc.creator | Sanchez-Ortega, Juana | |
dc.date.accessioned | 2013-11-04T10:48:42Z | |
dc.date.accessioned | 2018-07-04T16:09:22Z | |
dc.date.available | 2013-11-04T10:48:42Z | |
dc.date.available | 2018-07-04T16:09:22Z | |
dc.date.created | 2013-11-04T10:48:42Z | |
dc.date.issued | 2013-08-02 | |
dc.identifier | LINEAR & MULTILINEAR ALGEBRA, ABINGDON, v. 60, n. 10, supl. 1, Part 3, pp. 1125-1141, 42005, 2012 | |
dc.identifier | 0308-1087 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/37855 | |
dc.identifier | 10.1080/03081087.2011.651721 | |
dc.identifier | http://dx.doi.org/10.1080/03081087.2011.651721 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1632150 | |
dc.description.abstract | We apply Kolesnikov's algorithm to obtain a variety of nonassociative algebras defined by right anticommutativity and a "noncommutative" version of the Malcev identity. We use computer algebra to verify that these identities are equivalent to the identities of degree up to 4 satisfied by the dicommutator in every alternative dialgebra. We extend these computations to show that any special identity for Malcev dialgebras must have degree at least 7. Finally, we introduce a trilinear operation which makes any Malcev dialgebra into a Leibniz triple system. | |
dc.language | eng | |
dc.publisher | TAYLOR & FRANCIS LTD | |
dc.publisher | ABINGDON | |
dc.relation | LINEAR & MULTILINEAR ALGEBRA | |
dc.rights | Copyright TAYLOR & FRANCIS LTD | |
dc.rights | restrictedAccess | |
dc.subject | NONASSOCIATIVE ALGEBRA | |
dc.subject | COMPUTER ALGEBRA | |
dc.subject | DIALGEBRAS | |
dc.subject | TRILINEAR OPERATIONS | |
dc.title | Malcev dialgebras | |
dc.type | Artículos de revistas | |