dc.creatorPimenta, Marcos T. O.
dc.creatorSoares, Sérgio Henrique Monari
dc.date.accessioned2013-10-31T10:30:01Z
dc.date.accessioned2018-07-04T16:08:21Z
dc.date.available2013-10-31T10:30:01Z
dc.date.available2018-07-04T16:08:21Z
dc.date.created2013-10-31T10:30:01Z
dc.date.issued2013-08-02
dc.identifierJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, SAN DIEGO, v. 390, n. 1, pp. 274-289, 37043, 2012
dc.identifier0022-247X
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37019
dc.identifier10.1016/j.jmaa.2012.01.039
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2012.01.039
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1631934
dc.description.abstractSome superlinear fourth order elliptic equations are considered. A family of solutions is proved to exist and to concentrate at a point in the limit. The proof relies on variational methods and makes use of a weak version of the Ambrosetti-Rabinowitz condition. The existence and concentration of solutions are related to a suitable truncated equation. (C) 2012 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.publisherSAN DIEGO
dc.relationJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectVARIATIONAL METHODS
dc.subjectBIHARMONIC EQUATIONS
dc.subjectNONTRIVIAL SOLUTIONS
dc.titleExistence and concentration of solutions for a class of biharmonic equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución