dc.creator | Pimenta, Marcos T. O. | |
dc.creator | Soares, Sérgio Henrique Monari | |
dc.date.accessioned | 2013-10-31T10:30:01Z | |
dc.date.accessioned | 2018-07-04T16:08:21Z | |
dc.date.available | 2013-10-31T10:30:01Z | |
dc.date.available | 2018-07-04T16:08:21Z | |
dc.date.created | 2013-10-31T10:30:01Z | |
dc.date.issued | 2013-08-02 | |
dc.identifier | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, SAN DIEGO, v. 390, n. 1, pp. 274-289, 37043, 2012 | |
dc.identifier | 0022-247X | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/37019 | |
dc.identifier | 10.1016/j.jmaa.2012.01.039 | |
dc.identifier | http://dx.doi.org/10.1016/j.jmaa.2012.01.039 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1631934 | |
dc.description.abstract | Some superlinear fourth order elliptic equations are considered. A family of solutions is proved to exist and to concentrate at a point in the limit. The proof relies on variational methods and makes use of a weak version of the Ambrosetti-Rabinowitz condition. The existence and concentration of solutions are related to a suitable truncated equation. (C) 2012 Elsevier Inc. All rights reserved. | |
dc.language | eng | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.publisher | SAN DIEGO | |
dc.relation | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | |
dc.rights | Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.rights | restrictedAccess | |
dc.subject | VARIATIONAL METHODS | |
dc.subject | BIHARMONIC EQUATIONS | |
dc.subject | NONTRIVIAL SOLUTIONS | |
dc.title | Existence and concentration of solutions for a class of biharmonic equations | |
dc.type | Artículos de revistas | |