dc.creatorGalego, Eloi Medina
dc.creatorHagler, James N.
dc.date.accessioned2013-11-01T15:24:35Z
dc.date.accessioned2018-07-04T16:08:06Z
dc.date.available2013-11-01T15:24:35Z
dc.date.available2018-07-04T16:08:06Z
dc.date.created2013-11-01T15:24:35Z
dc.date.issued2013-08-02
dc.identifierPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, PROVIDENCE, v. 140, n. 11, supl. 2, Part 2, pp. 3843-3852, NOV, 2012
dc.identifier0002-9939
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37586
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1631877
dc.description.abstractWe extend some results of Rosenthal, Cembranos, Freniche, E. Saab-P. Saab and Ryan to study the geometry of copies and complemented copies of c(0)(Gamma) in the classical Banach spaces C(K, X) in terms of the carclinality of the set Gamma, of the density and caliber of K and of the geometry of X and its dual space X*. Here are two sample consequences of our results: (1) If C([0, 1], X) contains a copy of c(0)(N-1), then X contains a copy of c(0)(N-1). (2) C(beta N, X) contains a complemented copy of c(0)(N-1) if and only if X contains a copy of c(0)(N-1). Some of our results depend on set-theoretic assumptions. For example, we prove that it is relatively consistent with ZFC that if C(K) contains a copy of c(0)(N-1) and X has dimension NI, then C(K, X) contains a complemented copy of cc(0)(N-1).
dc.languageeng
dc.publisherAMER MATHEMATICAL SOC
dc.publisherPROVIDENCE
dc.relationPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
dc.rightsCopyright AMER MATHEMATICAL SOC
dc.rightsopenAccess
dc.subjectC(0)(GAMMA) SPACES
dc.subjectC(K, X) SPACES
dc.subjectJOSEFSON-NISSENZWEIG-ALPHA (JN(ALPHA)) PROPERTY
dc.titleCOPIES OF c(0)(Gamma) IN C(K, X) SPACES
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución