dc.creatorPerpetuo, Elen Aquino
dc.creatorSilva, Douglas Nascimento
dc.creatorAvanzi, Ingrid Regina
dc.creatorGracioso, Louise Hase
dc.creatorGalluzzi Baltazar, Marcela Passos
dc.creatorOller Nascimento, Claudio Augusto
dc.date.accessioned2013-11-01T09:54:16Z
dc.date.accessioned2018-07-04T16:07:16Z
dc.date.available2013-11-01T09:54:16Z
dc.date.available2018-07-04T16:07:16Z
dc.date.created2013-11-01T09:54:16Z
dc.date.issued2013-08-02
dc.identifierENVIRONMENTAL TECHNOLOGY, ABINGDON, v. 33, n. 15, supl. 4, Part 1-2, pp. 1739-1745, DEC, 2012
dc.identifier0959-3330
dc.identifierhttp://www.producao.usp.br/handle/BDPI/37148
dc.identifier10.1080/09593330.2011.644585
dc.identifierhttp://dx.doi.org/10.1080/09593330.2011.644585
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1631692
dc.description.abstractIn this study, an effective microbial consortium for the biodegradation of phenol was grown under different operational conditions, and the effects of phosphate concentration (1.4 g L-1, 2.8 g L-1, 4.2 g L-1), temperature (25 degrees C, 30 degrees C, 35 degrees C), agitation (150 rpm, 200 rpm, 250 rpm) and pH (6, 7, 8) on phenol degradation were investigated, whereupon an artificial neural network (ANN) model was developed in order to predict degradation. The learning, recall and generalization characteristics of neural networks were studied using data from the phenol degradation system. The efficiency of the model generated by the ANN was then tested and compared with the experimental results obtained. In both cases, the results corroborate the idea that aeration and temperature are crucial to increasing the efficiency of biodegradation.
dc.languageeng
dc.publisherTAYLOR & FRANCIS LTD
dc.publisherABINGDON
dc.relationENVIRONMENTAL TECHNOLOGY
dc.rightsCopyright TAYLOR & FRANCIS LTD
dc.rightsclosedAccess
dc.subjectEXPERIMENTAL DESIGN
dc.subjectARTIFICIAL NEURAL NETWORKS
dc.subjectMICROBIAL CONSORTIUM
dc.subjectPROCESS OPTIMIZATION
dc.subjectPHENOL DEGRADATION
dc.titlePhenol biodegradation by a microbial consortium: application of artificial neural network (ANN) modelling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución