dc.creatorGorodski, Claudio
dc.creatorHeintze, Ernst
dc.date.accessioned2013-10-30T16:17:25Z
dc.date.accessioned2018-07-04T16:04:33Z
dc.date.available2013-10-30T16:17:25Z
dc.date.available2018-07-04T16:04:33Z
dc.date.created2013-10-30T16:17:25Z
dc.date.issued2013-08-02
dc.identifierJOURNAL OF FIXED POINT THEORY AND APPLICATIONS, BASEL, v. 11, n. 1, supl. 1, Part 2, pp. 93-136, MAR, 2012
dc.identifier1661-7738
dc.identifierhttp://www.producao.usp.br/handle/BDPI/36942
dc.identifier10.1007/s11784-012-0079-y
dc.identifierhttp://dx.doi.org/10.1007/s11784-012-0079-y
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1631285
dc.description.abstractWe study isoparametric submanifolds of rank at least two in a separable Hilbert space, which are known to be homogeneous by the main result in [E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181], and with such a submanifold M and a point x in M we associate a canonical homogeneous structure I" (x) (a certain bilinear map defined on a subspace of T (x) M x T (x) M). We prove that I" (x) , together with the second fundamental form alpha (x) , encodes all the information about M, and we deduce from this the rigidity result that M is completely determined by alpha (x) and (Delta alpha) (x) , thereby making such submanifolds accessible to classification. As an essential step, we show that the one-parameter groups of isometries constructed in [E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181] to prove their homogeneity induce smooth and hence everywhere defined Killing fields, implying the continuity of I" (this result also seems to close a gap in [U. Christ, J. Differential Geom., 62 (2002), 1-15]). Here an important tool is the introduction of affine root systems of isoparametric submanifolds.
dc.languageeng
dc.publisherSPRINGER BASEL AG
dc.publisherBASEL
dc.relationJOURNAL OF FIXED POINT THEORY AND APPLICATIONS
dc.rightsCopyright SPRINGER BASEL AG
dc.rightsrestrictedAccess
dc.subjectISOPARAMETRIC SUBMANIFOLD
dc.subjectHILBERT SPACE
dc.subjectHOMOGENEOUS STRUCTURE
dc.subjectAFFINE ROOT SYSTEMS
dc.titleHomogeneous structures and rigidity of isoparametric submanifolds in Hilbert space
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución