dc.creatorBessa, G. Pacelli
dc.creatorMontenegro, J. Fabio
dc.creatorPiccione, Paolo
dc.date.accessioned2013-10-29T14:21:53Z
dc.date.accessioned2018-07-04T16:03:47Z
dc.date.available2013-10-29T14:21:53Z
dc.date.available2018-07-04T16:03:47Z
dc.date.created2013-10-29T14:21:53Z
dc.date.issued2012
dc.identifierJOURNAL OF GEOMETRIC ANALYSIS, NEW YORK, v. 22, n. 2, supl. 1, Part 2, pp. 603-620, APR, 2012
dc.identifier1050-6926
dc.identifierhttp://www.producao.usp.br/handle/BDPI/36385
dc.identifier10.1007/s12220-010-9207-3
dc.identifierhttp://dx.doi.org/10.1007/s12220-010-9207-3
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1631109
dc.description.abstractWe prove some estimates on the spectrum of the Laplacian of the total space of a Riemannian submersion in terms of the spectrum of the Laplacian of the base and the geometry of the fibers. When the fibers of the submersions are compact and minimal, we prove that the spectrum of the Laplacian of the total space is discrete if and only if the spectrum of the Laplacian of the base is discrete. When the fibers are not minimal, we prove a discreteness criterion for the total space in terms of the relative growth of the mean curvature of the fibers and the mean curvature of the geodesic spheres in the base. We discuss in particular the case of warped products.
dc.languageeng
dc.publisherSPRINGER
dc.publisherNEW YORK
dc.relationJOURNAL OF GEOMETRIC ANALYSIS
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectRIEMANNIAN SUBMERSIONS
dc.subjectDISCRETE SPECTRUM
dc.subjectESSENTIAL SPECTRUM
dc.titleRiemannian Submersions with Discrete Spectrum
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución