dc.creator | Bessa, G. Pacelli | |
dc.creator | Montenegro, J. Fabio | |
dc.creator | Piccione, Paolo | |
dc.date.accessioned | 2013-10-29T14:21:53Z | |
dc.date.accessioned | 2018-07-04T16:03:47Z | |
dc.date.available | 2013-10-29T14:21:53Z | |
dc.date.available | 2018-07-04T16:03:47Z | |
dc.date.created | 2013-10-29T14:21:53Z | |
dc.date.issued | 2012 | |
dc.identifier | JOURNAL OF GEOMETRIC ANALYSIS, NEW YORK, v. 22, n. 2, supl. 1, Part 2, pp. 603-620, APR, 2012 | |
dc.identifier | 1050-6926 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/36385 | |
dc.identifier | 10.1007/s12220-010-9207-3 | |
dc.identifier | http://dx.doi.org/10.1007/s12220-010-9207-3 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1631109 | |
dc.description.abstract | We prove some estimates on the spectrum of the Laplacian of the total space of a Riemannian submersion in terms of the spectrum of the Laplacian of the base and the geometry of the fibers. When the fibers of the submersions are compact and minimal, we prove that the spectrum of the Laplacian of the total space is discrete if and only if the spectrum of the Laplacian of the base is discrete. When the fibers are not minimal, we prove a discreteness criterion for the total space in terms of the relative growth of the mean curvature of the fibers and the mean curvature of the geodesic spheres in the base. We discuss in particular the case of warped products. | |
dc.language | eng | |
dc.publisher | SPRINGER | |
dc.publisher | NEW YORK | |
dc.relation | JOURNAL OF GEOMETRIC ANALYSIS | |
dc.rights | Copyright SPRINGER | |
dc.rights | restrictedAccess | |
dc.subject | RIEMANNIAN SUBMERSIONS | |
dc.subject | DISCRETE SPECTRUM | |
dc.subject | ESSENTIAL SPECTRUM | |
dc.title | Riemannian Submersions with Discrete Spectrum | |
dc.type | Artículos de revistas | |