dc.creatorPires, Benito Frazão
dc.creatorTeixeira, Marco Antonio
dc.date.accessioned2013-10-29T15:35:17Z
dc.date.accessioned2018-07-04T16:03:18Z
dc.date.available2013-10-29T15:35:17Z
dc.date.available2018-07-04T16:03:18Z
dc.date.created2013-10-29T15:35:17Z
dc.date.issued2013-08-02
dc.identifierBULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, NEW YORK, v. 43, n. 4, supl. 4, Part 1, pp. 637-653, DEC, 2012
dc.identifier1678-7544
dc.identifierhttp://www.producao.usp.br/handle/BDPI/36533
dc.identifier10.1007/s00574-012-0030-2
dc.identifierhttp://dx.doi.org/10.1007/s00574-012-0030-2
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1631002
dc.description.abstractLet phi: a"e(2) -> a"e(2) be an orientation-preserving C (1) involution such that phi(0) = 0. Let Spc(phi) = {Eigenvalues of D phi(p) | p a a"e(2)}. We prove that if Spc(phi) aS, a"e or Spc(phi) a (c) [1, 1 + epsilon) = a... for some epsilon > 0, then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h = (I + D phi(0)phi)/2,where I: a"e(2) -> a"e(2) is the identity map. Similarly, we prove that if phi is an orientation-reversing C (1) involution such that phi(0) = 0 and Trace (D phi(0)D phi(p) > - 1 for all p a a"e(2), then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h. Finally, we show that h may fail to be a global linearization of phi if the above conditions are not fulfilled.
dc.languageeng
dc.publisherSPRINGER
dc.publisherNEW YORK
dc.relationBULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY
dc.rightsCopyright SPRINGER
dc.rightsclosedAccess
dc.subjectPLANAR INVOLUTION
dc.subjectLINEARIZATION
dc.subjectSMOOTH CONJUGACY
dc.subjectFIXED POINT
dc.titleOn global linearization of planar involutions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución