dc.creator | Pires, Benito Frazão | |
dc.creator | Teixeira, Marco Antonio | |
dc.date.accessioned | 2013-10-29T15:35:17Z | |
dc.date.accessioned | 2018-07-04T16:03:18Z | |
dc.date.available | 2013-10-29T15:35:17Z | |
dc.date.available | 2018-07-04T16:03:18Z | |
dc.date.created | 2013-10-29T15:35:17Z | |
dc.date.issued | 2013-08-02 | |
dc.identifier | BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, NEW YORK, v. 43, n. 4, supl. 4, Part 1, pp. 637-653, DEC, 2012 | |
dc.identifier | 1678-7544 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/36533 | |
dc.identifier | 10.1007/s00574-012-0030-2 | |
dc.identifier | http://dx.doi.org/10.1007/s00574-012-0030-2 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1631002 | |
dc.description.abstract | Let phi: a"e(2) -> a"e(2) be an orientation-preserving C (1) involution such that phi(0) = 0. Let Spc(phi) = {Eigenvalues of D phi(p) | p a a"e(2)}. We prove that if Spc(phi) aS, a"e or Spc(phi) a (c) [1, 1 + epsilon) = a... for some epsilon > 0, then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h = (I + D phi(0)phi)/2,where I: a"e(2) -> a"e(2) is the identity map. Similarly, we prove that if phi is an orientation-reversing C (1) involution such that phi(0) = 0 and Trace (D phi(0)D phi(p) > - 1 for all p a a"e(2), then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h. Finally, we show that h may fail to be a global linearization of phi if the above conditions are not fulfilled. | |
dc.language | eng | |
dc.publisher | SPRINGER | |
dc.publisher | NEW YORK | |
dc.relation | BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | |
dc.rights | Copyright SPRINGER | |
dc.rights | closedAccess | |
dc.subject | PLANAR INVOLUTION | |
dc.subject | LINEARIZATION | |
dc.subject | SMOOTH CONJUGACY | |
dc.subject | FIXED POINT | |
dc.title | On global linearization of planar involutions | |
dc.type | Artículos de revistas | |