dc.creatorNogueira, E. S.
dc.creatorPinto, J. C.
dc.creatorVianna, A. S., Jr.
dc.date.accessioned2013-10-29T12:51:35Z
dc.date.accessioned2018-07-04T16:02:15Z
dc.date.available2013-10-29T12:51:35Z
dc.date.available2018-07-04T16:02:15Z
dc.date.created2013-10-29T12:51:35Z
dc.date.issued2012
dc.identifierCANADIAN JOURNAL OF CHEMICAL ENGINEERING, HOBOKEN, v. 90, n. 4, supl. 4, Part 1, pp. 983-995, AUG, 2012
dc.identifier0008-4034
dc.identifierhttp://www.producao.usp.br/handle/BDPI/36273
dc.identifier10.1002/cjce.20611
dc.identifierhttp://dx.doi.org/10.1002/cjce.20611
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1630764
dc.description.abstractThis work evaluates the spatial distribution of normalised rates of droplet breakage and droplet coalescence in liquidliquid dispersions maintained in agitated tanks at operation conditions normally used to perform suspension polymerisation reactions. Particularly, simulations are performed with multiphase computational fluid dynamics (CFD) models to represent the flow field in liquidliquid styrene suspension polymerisation reactors for the first time. CFD tools are used first to compute the spatial distribution of the turbulent energy dissipation rates (e) inside the reaction vessel; afterwards, normalised rates of droplet breakage and particle coalescence are computed as functions of e. Surprisingly, multiphase simulations showed that the rates of energy dissipation can be very high near the free vortex surfaces, which has been completely neglected in previous works. The obtained results indicate the existence of extremely large energy dissipation gradients inside the vessel, so that particle breakage occurs primarily in very small regions that surround the impeller and the free vortex surface, while particle coalescence takes place in the liquid bulk. As a consequence, particle breakage should be regarded as an independent source term or a boundary phenomenon. Based on the obtained results, it can be very difficult to justify the use of isotropic assumptions to formulate particle population balances in similar systems, even when multiple compartment models are used to describe the fluid dynamic behaviour of the agitated vessel. (C) 2011 Canadian Society for Chemical Engineering
dc.languageeng
dc.publisherWILEY-BLACKWELL
dc.publisherHOBOKEN
dc.relationCANADIAN JOURNAL OF CHEMICAL ENGINEERING
dc.rightsCopyright WILEY-BLACKWELL
dc.rightsrestrictedAccess
dc.subjectCFD
dc.subjectPOPULATION BALANCE
dc.subjectPARTICLE BREAKAGE
dc.subjectPARTICLE COALESCENCE
dc.subjectMULTIPHASE
dc.subjectSUSPENSION
dc.titleAnalysis of energy dissipation in stirred suspension polymerisation reactors using computational fluid dynamics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución