dc.creatorLemonte, Artur J.
dc.date.accessioned2013-10-14T19:38:31Z
dc.date.accessioned2018-07-04T16:01:39Z
dc.date.available2013-10-14T19:38:31Z
dc.date.available2018-07-04T16:01:39Z
dc.date.created2013-10-14T19:38:31Z
dc.date.issued2012
dc.identifierJOURNAL OF STATISTICAL PLANNING AND INFERENCE, AMSTERDAM, v. 142, n. 5, pp. 1178-1188, MAY, 2012
dc.identifier0378-3758
dc.identifierhttp://www.producao.usp.br/handle/BDPI/35093
dc.identifier10.1016/j.jspi.2011.11.019
dc.identifierhttp://dx.doi.org/10.1016/j.jspi.2011.11.019
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1630634
dc.description.abstractIn this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.publisherAMSTERDAM
dc.relationJOURNAL OF STATISTICAL PLANNING AND INFERENCE
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectGRADIENT TEST
dc.subjectLIKELIHOOD RATIO TEST
dc.subjectLOCAL POWER
dc.subjectSCORE TEST
dc.subjectSYMMETRIC DISTRIBUTION
dc.subjectWALD TEST
dc.titleLocal power properties of some asymptotic tests in symmetric linear regression models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución