Artículos de revistas
Globally solvable systems of complex vector fields
Fecha
2012Registro en:
JOURNAL OF DIFFERENTIAL EQUATIONS, SAN DIEGO, v. 252, n. 8, pp. 4598-4623, APR 15, 2012
0022-0396
10.1016/j.jde.2012.01.007
Autor
Bergamasco, Adalberto Panobianco
Medeira, Cléber de
Zani, Sergio Luis
Institución
Resumen
We consider a class of involutive systems of n smooth vector fields on the n + 1 dimensional torus. We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space.