dc.creatorAragona, Jorge
dc.creatorFernandez, Roseli
dc.creatorJuriaans, Stanley O.
dc.creatorOberguggenberger, Michael
dc.date.accessioned2013-10-24T16:44:11Z
dc.date.accessioned2018-07-04T16:00:45Z
dc.date.available2013-10-24T16:44:11Z
dc.date.available2018-07-04T16:00:45Z
dc.date.created2013-10-24T16:44:11Z
dc.date.issued2012
dc.identifierMONATSHEFTE FUR MATHEMATIK, WIEN, v. 166, n. 1, supl. 1, Part 2, pp. 1-18, APR, 2012
dc.identifier0026-9255
dc.identifierhttp://www.producao.usp.br/handle/BDPI/35910
dc.identifier10.1007/s00605-010-0275-z
dc.identifierhttp://dx.doi.org/10.1007/s00605-010-0275-z
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1630436
dc.description.abstractIn this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.
dc.languageeng
dc.publisherSPRINGER WIEN
dc.publisherWIEN
dc.relationMONATSHEFTE FUR MATHEMATIK
dc.rightsCopyright SPRINGER WIEN
dc.rightsrestrictedAccess
dc.subjectCOLOMBEAU ALGEBRAS
dc.subjectGENERALIZED FUNCTIONS
dc.subjectNON-ARCHIMEDEAN DIFFERENTIAL CALCULUS
dc.subjectMEMBRANES
dc.subjectGENERALIZED CAUCHY FORMULA
dc.titleDifferential calculus and integration of generalized functions over membranes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución