dc.creatorHentzel, Irvin R.
dc.creatorPeresi, Luiz A.
dc.date.accessioned2013-10-24T16:15:38Z
dc.date.accessioned2018-07-04T16:00:29Z
dc.date.available2013-10-24T16:15:38Z
dc.date.available2018-07-04T16:00:29Z
dc.date.created2013-10-24T16:15:38Z
dc.date.issued2012
dc.identifierLINEAR ALGEBRA AND ITS APPLICATIONS, NEW YORK, v. 436, n. 7, supl. 1, Part 3, pp. 2315-2330, APR 1, 2012
dc.identifier0024-3795
dc.identifierhttp://www.producao.usp.br/handle/BDPI/35864
dc.identifier10.1016/j.laa.2011.09.021
dc.identifierhttp://dx.doi.org/10.1016/j.laa.2011.09.021
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1630380
dc.description.abstractBol algebras appear as the tangent algebra of Bol loops. A (left) Bol algebra is a vector space equipped with a binary operation [a, b] and a ternary operation {a, b, c} that satisfy five defining identities. If A is a left or right alternative algebra then A(b) is a Bol algebra, where [a, b] := ab - ba is the commutator and {a, b, c} := < b, c, a > is the Jordan associator. A special identity is an identity satisfied by Ab for all right alternative algebras A, but not satisfied by the free Bol algebra. We show that there are no special identities of degree <= 7, but there are special identities of degree 8. We obtain all the special identities of degree 8 in partition six-two. (C) 2011 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE INC
dc.publisherNEW YORK
dc.relationLINEAR ALGEBRA AND ITS APPLICATIONS
dc.rightsCopyright ELSEVIER SCIENCE INC
dc.rightsrestrictedAccess
dc.subjectBOL ALGEBRAS
dc.subjectPOLYNOMIAL IDENTITIES
dc.subjectCOMPUTATIONAL METHODS
dc.subjectREPRESENTATIONS OF THE SYMMETRIC GROUP
dc.titleSpecial identities for Bol algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución