dc.creatorSilva, Paulo Leandro Dattori da
dc.creatorSilva, Evandro Raimundo da
dc.date.accessioned2013-10-14T19:06:43Z
dc.date.accessioned2018-07-04T15:58:50Z
dc.date.available2013-10-14T19:06:43Z
dc.date.available2018-07-04T15:58:50Z
dc.date.created2013-10-14T19:06:43Z
dc.date.issued2012
dc.identifierARCHIV DER MATHEMATIK, BASEL, v. 98, n. 2, pp. 183-192, FEB, 2012
dc.identifier0003-889X
dc.identifierhttp://www.producao.usp.br/handle/BDPI/35051
dc.identifier10.1007/s00013-011-0351-1
dc.identifierhttp://dx.doi.org/10.1007/s00013-011-0351-1
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1630012
dc.description.abstractThis work deals with the solvability near the characteristic set Sigma = {0} x S-1 of operators of the form L = partial derivative/partial derivative t+(x(n) a(x)+ ix(m) b(x))partial derivative/partial derivative x, b not equivalent to 0 and a(0) not equal 0, defined on Omega(epsilon) = (-epsilon, epsilon) x S-1, epsilon > 0, where a and b are real-valued smooth functions in (-epsilon, epsilon) and m >= 2n. It is shown that given f belonging to a subspace of finite codimension of C-infinity (Omega(epsilon)) there is a solution u is an element of L-infinity of the equation Lu = f in a neighborhood of Sigma; moreover, the L-infinity regularity is sharp.
dc.languageeng
dc.publisherBIRKHAUSER VERLAG AG
dc.publisherBASEL
dc.relationARCHIV DER MATHEMATIK
dc.rightsCopyright BIRKHAUSER VERLAG AG
dc.rightsrestrictedAccess
dc.subjectSEMI-GLOBAL SOLVABILITY
dc.subjectCONDITION (P)
dc.subjectPARTIAL FOURIER SERIES
dc.titleSolvability near the characteristic set for a special class of complex vector fields
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución