dc.creator | Silva, Paulo Leandro Dattori da | |
dc.creator | Silva, Evandro Raimundo da | |
dc.date.accessioned | 2013-10-14T19:06:43Z | |
dc.date.accessioned | 2018-07-04T15:58:50Z | |
dc.date.available | 2013-10-14T19:06:43Z | |
dc.date.available | 2018-07-04T15:58:50Z | |
dc.date.created | 2013-10-14T19:06:43Z | |
dc.date.issued | 2012 | |
dc.identifier | ARCHIV DER MATHEMATIK, BASEL, v. 98, n. 2, pp. 183-192, FEB, 2012 | |
dc.identifier | 0003-889X | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/35051 | |
dc.identifier | 10.1007/s00013-011-0351-1 | |
dc.identifier | http://dx.doi.org/10.1007/s00013-011-0351-1 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1630012 | |
dc.description.abstract | This work deals with the solvability near the characteristic set Sigma = {0} x S-1 of operators of the form L = partial derivative/partial derivative t+(x(n) a(x)+ ix(m) b(x))partial derivative/partial derivative x, b not equivalent to 0 and a(0) not equal 0, defined on Omega(epsilon) = (-epsilon, epsilon) x S-1, epsilon > 0, where a and b are real-valued smooth functions in (-epsilon, epsilon) and m >= 2n. It is shown that given f belonging to a subspace of finite codimension of C-infinity (Omega(epsilon)) there is a solution u is an element of L-infinity of the equation Lu = f in a neighborhood of Sigma; moreover, the L-infinity regularity is sharp. | |
dc.language | eng | |
dc.publisher | BIRKHAUSER VERLAG AG | |
dc.publisher | BASEL | |
dc.relation | ARCHIV DER MATHEMATIK | |
dc.rights | Copyright BIRKHAUSER VERLAG AG | |
dc.rights | restrictedAccess | |
dc.subject | SEMI-GLOBAL SOLVABILITY | |
dc.subject | CONDITION (P) | |
dc.subject | PARTIAL FOURIER SERIES | |
dc.title | Solvability near the characteristic set for a special class of complex vector fields | |
dc.type | Artículos de revistas | |