dc.creatorKharchenko, V. K.
dc.creatorShestakov, I. P.
dc.date.accessioned2013-10-14T19:06:31Z
dc.date.accessioned2018-07-04T15:58:49Z
dc.date.available2013-10-14T19:06:31Z
dc.date.available2018-07-04T15:58:49Z
dc.date.created2013-10-14T19:06:31Z
dc.date.issued2012
dc.identifierADVANCES IN APPLIED CLIFFORD ALGEBRAS, BASEL, v. 22, n. 3, Special Issue, supl. 1, Part 1, pp. 721-743, SEP, 2012
dc.identifier0188-7009
dc.identifierhttp://www.producao.usp.br/handle/BDPI/35048
dc.identifier10.1007/s00006-012-0357-1
dc.identifierhttp://dx.doi.org/10.1007/s00006-012-0357-1
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1630007
dc.description.abstractThe generalizations of Lie algebras appeared in the modern mathematics and mathematical physics. In this paper we consider recent developments and remaining open problems on the subject. Some of that developments have been influenced by lectures given by Professor Jaime Keller in his research seminar. The survey includes Lie superalgebras, color Lie algebras, Lie algebras in symmetric categories, free Lie tau-algebras, and some generalizations with non-associative enveloping algebras: tangent algebras to analytic loops, bialgebras and primitive elements, non-associative Hopf algebras.
dc.languageeng
dc.publisherSPRINGER BASEL AG
dc.publisherBASEL
dc.relationADVANCES IN APPLIED CLIFFORD ALGEBRAS
dc.rightsCopyright SPRINGER BASEL AG
dc.rightsclosedAccess
dc.subjectLIE ALGEBRA
dc.subjectSUPERALGEBRA
dc.subjectH-HOPF ALGEBRA
dc.titleGeneralizations of Lie Algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución