dc.creator | Marzantowicz, Waclaw | |
dc.creator | Mattos, Denise de | |
dc.creator | Santos, Edivaldo L. dos | |
dc.date.accessioned | 2013-10-12T17:13:20Z | |
dc.date.accessioned | 2018-07-04T15:58:45Z | |
dc.date.available | 2013-10-12T17:13:20Z | |
dc.date.available | 2018-07-04T15:58:45Z | |
dc.date.created | 2013-10-12T17:13:20Z | |
dc.date.issued | 2012 | |
dc.identifier | ALGEBRAIC AND GEOMETRIC TOPOLOGY, COVENTRY, v. 12, n. 4, supl. 5, Part 3, pp. 2245-2258, DEC 1, 2012 | |
dc.identifier | 1472-2739 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/34221 | |
dc.identifier | 10.2140/agt.2012.12.2245 | |
dc.identifier | http://dx.doi.org/10.2140/agt.2012.12.2245 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1629990 | |
dc.description.abstract | Let G = Z(pk) be a cyclic group of prime power order and let V and W be orthogonal representations of G with V-G = W-G = W-G = {0}. Let S(V) be the sphere of V and suppose f: S(V) -> W is a G-equivariant mapping. We give an estimate for the dimension of the set f(-1){0} in terms of V and W. This extends the Bourgin-Yang version of the Borsuk-Ulam theorem to this class of groups. Using this estimate, we also estimate the size of the G-coincidences set of a continuous map from S(V) into a real vector space W'. | |
dc.language | eng | |
dc.publisher | GEOMETRY & TOPOLOGY PUBLICATIONS | |
dc.publisher | CONVENTRY | |
dc.relation | ALGEBRAIC AND GEOMETRIC TOPOLOGY | |
dc.rights | Copyright GEOMETRY & TOPOLOGY PUBLICATIONS | |
dc.rights | closedAccess | |
dc.title | Bourgin-Yang version of the Borsuk-Ulam theorem for Z(pk)-equivariant maps | |
dc.type | Artículos de revistas | |