dc.creatorMarzantowicz, Waclaw
dc.creatorMattos, Denise de
dc.creatorSantos, Edivaldo L. dos
dc.date.accessioned2013-10-12T17:13:20Z
dc.date.accessioned2018-07-04T15:58:45Z
dc.date.available2013-10-12T17:13:20Z
dc.date.available2018-07-04T15:58:45Z
dc.date.created2013-10-12T17:13:20Z
dc.date.issued2012
dc.identifierALGEBRAIC AND GEOMETRIC TOPOLOGY, COVENTRY, v. 12, n. 4, supl. 5, Part 3, pp. 2245-2258, DEC 1, 2012
dc.identifier1472-2739
dc.identifierhttp://www.producao.usp.br/handle/BDPI/34221
dc.identifier10.2140/agt.2012.12.2245
dc.identifierhttp://dx.doi.org/10.2140/agt.2012.12.2245
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1629990
dc.description.abstractLet G = Z(pk) be a cyclic group of prime power order and let V and W be orthogonal representations of G with V-G = W-G = W-G = {0}. Let S(V) be the sphere of V and suppose f: S(V) -> W is a G-equivariant mapping. We give an estimate for the dimension of the set f(-1){0} in terms of V and W. This extends the Bourgin-Yang version of the Borsuk-Ulam theorem to this class of groups. Using this estimate, we also estimate the size of the G-coincidences set of a continuous map from S(V) into a real vector space W'.
dc.languageeng
dc.publisherGEOMETRY & TOPOLOGY PUBLICATIONS
dc.publisherCONVENTRY
dc.relationALGEBRAIC AND GEOMETRIC TOPOLOGY
dc.rightsCopyright GEOMETRY & TOPOLOGY PUBLICATIONS
dc.rightsclosedAccess
dc.titleBourgin-Yang version of the Borsuk-Ulam theorem for Z(pk)-equivariant maps
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución