dc.creatorBremner, M. R.
dc.creatorPeresi, L. A.
dc.date.accessioned2013-10-14T17:15:23Z
dc.date.accessioned2018-07-04T15:58:23Z
dc.date.available2013-10-14T17:15:23Z
dc.date.available2018-07-04T15:58:23Z
dc.date.created2013-10-14T17:15:23Z
dc.date.issued2012
dc.identifierJOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, BRISTOL, v. 45, n. 50, supl. 1, Part 2, pp. 3366-3381, DEC 21, 2012
dc.identifier1751-8113
dc.identifierhttp://www.producao.usp.br/handle/BDPI/34569
dc.identifier10.1088/1751-8113/45/50/505201
dc.identifierhttp://dx.doi.org/10.1088/1751-8113/45/50/505201
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1629910
dc.description.abstractWe use computer algebra to study polynomial identities for the trilinear operation [a, b, c] = abc - acb - bac + bca + cab - cba in the free associative algebra. It is known that [a, b, c] satisfies the alternating property in degree 3, no new identities in degree 5, a multilinear identity in degree 7 which alternates in 6 arguments, and no new identities in degree 9. We use the representation theory of the symmetric group to demonstrate the existence of new identities in degree 11. The only irreducible representations of dimension <400 with new identities correspond to partitions 2(5), 1 and 2(4), 1(3) and have dimensions 132 and 165. We construct an explicit new multilinear identity for partition 2(5), 1 and we demonstrate the existence of a new non-multilinear identity in which the underlying variables are permutations of a(2)b(2)c(2)d(2)e(2) f.
dc.languageeng
dc.publisherIOP PUBLISHING LTD
dc.publisherBRISTOL
dc.relationJOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
dc.rightsCopyright IOP PUBLISHING LTD
dc.rightsrestrictedAccess
dc.titleHigher identities for the ternary commutator
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución