dc.creator | de Lima, L. L. | |
dc.creator | Piccione, P. | |
dc.creator | Zedda, M. | |
dc.date.accessioned | 2013-09-24T13:02:50Z | |
dc.date.accessioned | 2018-07-04T15:57:26Z | |
dc.date.available | 2013-09-24T13:02:50Z | |
dc.date.available | 2018-07-04T15:57:26Z | |
dc.date.created | 2013-09-24T13:02:50Z | |
dc.date.issued | 2012 | |
dc.identifier | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, PARIS, v. 29, n. 2, pp. 261-277, MAR-APR, 2012 | |
dc.identifier | 0294-1449 | |
dc.identifier | http://www.producao.usp.br/handle/BDPI/33628 | |
dc.identifier | 10.1016/j.anihpc.2011.10.005 | |
dc.identifier | http://dx.doi.org/10.1016/j.anihpc.2011.10.005 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1629693 | |
dc.description.abstract | We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products of compact manifolds. Using (equivariant) bifurcation theory we determine the existence of infinitely many metrics that are accumulation points of pairwise non-homothetic solutions of the Yamabe problem. Using local rigidity and some compactness results for solutions of the Yamabe problem, we also exhibit new examples of conformal classes (with positive Yamabe constant) for which uniqueness holds. (C) 2011 Elsevier Masson SAS. All rights reserved. | |
dc.language | eng | |
dc.publisher | GAUTHIER-VILLARS/EDITIONS ELSEVIER | |
dc.publisher | PARIS | |
dc.relation | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | |
dc.rights | Copyright GAUTHIER-VILLARS/EDITIONS ELSEVIER | |
dc.rights | restrictedAccess | |
dc.title | On bifurcation of solutions of the Yamabe problem in product manifolds | |
dc.type | Artículos de revistas | |