dc.creatorde Lima, L. L.
dc.creatorPiccione, P.
dc.creatorZedda, M.
dc.date.accessioned2013-09-24T13:02:50Z
dc.date.accessioned2018-07-04T15:57:26Z
dc.date.available2013-09-24T13:02:50Z
dc.date.available2018-07-04T15:57:26Z
dc.date.created2013-09-24T13:02:50Z
dc.date.issued2012
dc.identifierANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, PARIS, v. 29, n. 2, pp. 261-277, MAR-APR, 2012
dc.identifier0294-1449
dc.identifierhttp://www.producao.usp.br/handle/BDPI/33628
dc.identifier10.1016/j.anihpc.2011.10.005
dc.identifierhttp://dx.doi.org/10.1016/j.anihpc.2011.10.005
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1629693
dc.description.abstractWe study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products of compact manifolds. Using (equivariant) bifurcation theory we determine the existence of infinitely many metrics that are accumulation points of pairwise non-homothetic solutions of the Yamabe problem. Using local rigidity and some compactness results for solutions of the Yamabe problem, we also exhibit new examples of conformal classes (with positive Yamabe constant) for which uniqueness holds. (C) 2011 Elsevier Masson SAS. All rights reserved.
dc.languageeng
dc.publisherGAUTHIER-VILLARS/EDITIONS ELSEVIER
dc.publisherPARIS
dc.relationANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE
dc.rightsCopyright GAUTHIER-VILLARS/EDITIONS ELSEVIER
dc.rightsrestrictedAccess
dc.titleOn bifurcation of solutions of the Yamabe problem in product manifolds
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución