dc.creatorVillalba, Jesus D.
dc.creatorGomez, Ivan D.
dc.creatorLaier, Jose E.
dc.date.accessioned2013-09-16T19:43:07Z
dc.date.accessioned2018-07-04T15:57:20Z
dc.date.available2013-09-16T19:43:07Z
dc.date.available2018-07-04T15:57:20Z
dc.date.created2013-09-16T19:43:07Z
dc.date.issued2012-06
dc.identifierREVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, MEDELLIN, v. 32, n. 63, pp. 141-153, JUN, 2012
dc.identifier0120-6230
dc.identifierhttp://www.producao.usp.br/handle/BDPI/33398
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1629664
dc.description.abstractIn this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.
dc.languagespa
dc.publisherIMPRENTA UNIV ANTIOQUIA
dc.publisherMEDELLIN
dc.relationREVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA
dc.rightsCopyright IMPRENTA UNIV ANTIOQUIA
dc.rightsclosedAccess
dc.subjectDAMAGE DETECTION
dc.subjectNEURAL NETWORKS
dc.subjectDYNAMICAL PARAMETER
dc.titleDamage detection in beams by using artificial neural networks and dynamical parameters
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución