dc.creatorArrieta, Jose M.
dc.creatorCarvalho, Alexandre N.
dc.creatorLanga, Jose A.
dc.creatorRodriguez-Bernal, Anibal
dc.date.accessioned2013-10-14T17:52:06Z
dc.date.accessioned2018-07-04T15:57:02Z
dc.date.available2013-10-14T17:52:06Z
dc.date.available2018-07-04T15:57:02Z
dc.date.created2013-10-14T17:52:06Z
dc.date.issued2012
dc.identifierJOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, NEW YORK, v. 24, n. 3, pp. 427-481, Sept, 2012
dc.identifier1040-7294
dc.identifierhttp://www.producao.usp.br/handle/BDPI/34855
dc.identifier10.1007/s10884-012-9269-y
dc.identifierhttp://dx.doi.org/10.1007/s10884-012-9269-y
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1629599
dc.description.abstractIn this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous dynamical systems. This is accomplished through a detailed analysis of the structure of the invariant sets and its behavior under perturbation. We prove that a bounded hyperbolic global solutions persists under singular perturbations and that their nonlinear unstable manifold behave continuously. To accomplish this, we need to establish results on roughness of exponential dichotomies under these singular perturbations. Our results imply that, if the limiting pullback attractor of a nonautonomous dynamical system is the closure of a countable union of unstable manifolds of global bounded hyperbolic solutions, then it behaves continuously (upper and lower) under singular perturbations.
dc.languageeng
dc.publisherSPRINGER
dc.publisherNEW YORK
dc.relationJOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectNONAUTONOMOUS DYNAMICAL SYSTEMS
dc.subjectHYPERBOLIC GLOBAL BOUNDED SOLUTIONS
dc.subjectUNSTABLE MANIFOLDS
dc.subjectDICHOTOMY
dc.subjectSINGULAR PERTURBATIONS
dc.subjectATTRACTORS
dc.subjectLOWER SEMICONTINUITY
dc.titleContinuity of Dynamical Structures for Nonautonomous Evolution Equations Under Singular Perturbations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución