dc.creatorO'Carroll, Michael Louis
dc.date.accessioned2013-10-12T16:54:08Z
dc.date.accessioned2018-07-04T15:56:39Z
dc.date.available2013-10-12T16:54:08Z
dc.date.available2018-07-04T15:56:39Z
dc.date.created2013-10-12T16:54:08Z
dc.date.issued2012
dc.identifierJOURNAL OF STATISTICAL PHYSICS, NEW YORK, v. 146, n. 4, p. 864-869, FEB, 2012
dc.identifier0022-4715
dc.identifierhttp://www.producao.usp.br/handle/BDPI/34202
dc.identifier10.1007/s10955-012-0428-7
dc.identifierhttp://dx.doi.org/10.1007/s10955-012-0428-7
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1629511
dc.description.abstractWe consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.
dc.languageeng
dc.publisherSPRINGER
dc.publisherNEW YORK
dc.relationJOURNAL OF STATISTICAL PHYSICS
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectTRANSFER MATRIX SPECTRUM
dc.subjectDECAY OF CORRELATIONS
dc.subjectBOUND STATES
dc.subjectHIGH-TEMPERATURE FERROMAGNETIC SPIN SYSTEMS
dc.subjectBINDING ENERGY ANALYTICITY
dc.titleAnalytic perturbation theory for bound states in the transfer matrix spectrum of weakly correlated lattice ferromagnetic spin systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución