dc.creatorHoppen, Carlos
dc.creatorKohayakawa, Yoshiharu
dc.creatorSampaio, Rudini M.
dc.date.accessioned2013-08-09T11:07:41Z
dc.date.accessioned2018-07-04T15:55:12Z
dc.date.available2013-08-09T11:07:41Z
dc.date.available2018-07-04T15:55:12Z
dc.date.created2013-08-09T11:07:41Z
dc.date.issued2012-12
dc.identifierDISCRETE APPLIED MATHEMATICS, AMSTERDAM, v. 160, n. 18, Special Issue, supl. 1, Part 2, pp. 2716-2727, DEC, 2012
dc.identifier0166-218X
dc.identifierhttp://www.producao.usp.br/handle/BDPI/32532
dc.identifier10.1016/j.dam.2011.06.002
dc.identifierhttp://dx.doi.org/10.1016/j.dam.2011.06.002
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1629202
dc.description.abstractThe existence of a small partition of a combinatorial structure into random-like subparts, a so-called regular partition, has proven to be very useful in the study of extremal problems, and has deep algorithmic consequences. The main result in this direction is the Szemeredi Regularity Lemma in graph theory. In this note, we are concerned with regularity in permutations: we show that every permutation of a sufficiently large set has a regular partition into a small number of intervals. This refines the partition given by Cooper (2006) [10], which required an additional non-interval exceptional class. We also introduce a distance between permutations that plays an important role in the study of convergence of a permutation sequence. (C) 2011 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.publisherAMSTERDAM
dc.relationDISCRETE APPLIED MATHEMATICS
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectCOMBINATORICS OF PERMUTATIONS
dc.subjectREGULARITY LEMMA
dc.subjectPATTERNS
dc.subjectDISCREPANCY
dc.subjectCONVERGENCE FOR PERMUTATION SEQUENCES
dc.titleA note on permutation regularity
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución