dc.creatorGHOSH, Pulak
dc.creatorBAYES, C. L.
dc.creatorLACHOS, V. H.
dc.date.accessioned2012-10-20T04:52:29Z
dc.date.accessioned2018-07-04T15:47:30Z
dc.date.available2012-10-20T04:52:29Z
dc.date.available2018-07-04T15:47:30Z
dc.date.created2012-10-20T04:52:29Z
dc.date.issued2009
dc.identifierCOMPUTATIONAL STATISTICS & DATA ANALYSIS, v.53, n.4, p.1066-1079, 2009
dc.identifier0167-9473
dc.identifierhttp://producao.usp.br/handle/BDPI/30793
dc.identifier10.1016/j.csda.2008.09.024
dc.identifierhttp://dx.doi.org/10.1016/j.csda.2008.09.024
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627432
dc.description.abstractMeasurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationComputational Statistics & Data Analysis
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.titleA robust Bayesian approach to null intercept measurement error model with application to dental data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución