dc.creatorBENEVIDES, Fabricio Siqueira
dc.creatorSKOKAN, Jozef
dc.date.accessioned2012-10-20T04:52:27Z
dc.date.accessioned2018-07-04T15:47:28Z
dc.date.available2012-10-20T04:52:27Z
dc.date.available2018-07-04T15:47:28Z
dc.date.created2012-10-20T04:52:27Z
dc.date.issued2009
dc.identifierJOURNAL OF COMBINATORIAL THEORY SERIES B, v.99, n.4, p.690-708, 2009
dc.identifier0095-8956
dc.identifierhttp://producao.usp.br/handle/BDPI/30787
dc.identifier10.1016/j.jctb.2008.12.002
dc.identifierhttp://dx.doi.org/10.1016/j.jctb.2008.12.002
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627426
dc.description.abstractDenote by R(L, L, L) the minimum integer N such that any 3-coloring of the edges of the complete graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdos conjectured that when L is the cycle C(n) on n vertices, R(C(n), C(n), C(n)) = 4n - 3 for every odd n > 3. Luczak proved that if n is odd, then R(C(n), C(n), C(n)) = 4n + o(n), as n -> infinity, and Kohayakawa, Simonovits and Skokan confirmed the Bondy-Erdos conjecture for all sufficiently large values of n. Figaj and Luczak determined an asymptotic result for the `complementary` case where the cycles are even: they showed that for even n, we have R(C(n), C(n), C(n)) = 2n + o(n), as n -> infinity. In this paper, we prove that there exists n I such that for every even n >= n(1), R(C(n), C(n), C(n)) = 2n. (C) 2009 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Combinatorial Theory Series B
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectCycles
dc.subjectRamsey number
dc.subjectRegularity lemma
dc.subjectStability
dc.titleThe 3-colored Ramsey number of even cycles
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución