dc.creator | BENEVIDES, Fabricio Siqueira | |
dc.creator | SKOKAN, Jozef | |
dc.date.accessioned | 2012-10-20T04:52:27Z | |
dc.date.accessioned | 2018-07-04T15:47:28Z | |
dc.date.available | 2012-10-20T04:52:27Z | |
dc.date.available | 2018-07-04T15:47:28Z | |
dc.date.created | 2012-10-20T04:52:27Z | |
dc.date.issued | 2009 | |
dc.identifier | JOURNAL OF COMBINATORIAL THEORY SERIES B, v.99, n.4, p.690-708, 2009 | |
dc.identifier | 0095-8956 | |
dc.identifier | http://producao.usp.br/handle/BDPI/30787 | |
dc.identifier | 10.1016/j.jctb.2008.12.002 | |
dc.identifier | http://dx.doi.org/10.1016/j.jctb.2008.12.002 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1627426 | |
dc.description.abstract | Denote by R(L, L, L) the minimum integer N such that any 3-coloring of the edges of the complete graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdos conjectured that when L is the cycle C(n) on n vertices, R(C(n), C(n), C(n)) = 4n - 3 for every odd n > 3. Luczak proved that if n is odd, then R(C(n), C(n), C(n)) = 4n + o(n), as n -> infinity, and Kohayakawa, Simonovits and Skokan confirmed the Bondy-Erdos conjecture for all sufficiently large values of n. Figaj and Luczak determined an asymptotic result for the `complementary` case where the cycles are even: they showed that for even n, we have R(C(n), C(n), C(n)) = 2n + o(n), as n -> infinity. In this paper, we prove that there exists n I such that for every even n >= n(1), R(C(n), C(n), C(n)) = 2n. (C) 2009 Elsevier Inc. All rights reserved. | |
dc.language | eng | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.relation | Journal of Combinatorial Theory Series B | |
dc.rights | Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.rights | restrictedAccess | |
dc.subject | Cycles | |
dc.subject | Ramsey number | |
dc.subject | Regularity lemma | |
dc.subject | Stability | |
dc.title | The 3-colored Ramsey number of even cycles | |
dc.type | Artículos de revistas | |