dc.creatorBREMNER, Murray R.
dc.creatorPERESI, Luiz A.
dc.date.accessioned2012-10-20T04:51:18Z
dc.date.accessioned2018-07-04T15:47:21Z
dc.date.available2012-10-20T04:51:18Z
dc.date.available2018-07-04T15:47:21Z
dc.date.created2012-10-20T04:51:18Z
dc.date.issued2009
dc.identifierJOURNAL OF ALGEBRA, v.322, n.6, p.2000-2026, 2009
dc.identifier0021-8693
dc.identifierhttp://producao.usp.br/handle/BDPI/30756
dc.identifier10.1016/j.jalgebra.2009.06.014
dc.identifierhttp://dx.doi.org/10.1016/j.jalgebra.2009.06.014
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627395
dc.description.abstractWe consider polynomial identities satisfied by nonhomogeneous subalgebras of Lie and special Jordan superalgebras: we ignore the grading and regard the superalgebra as an ordinary algebra. The Lie case has been studied by Volichenko and Baranov: they found identities in degrees 3, 4 and 5 which imply all the identities in degrees <= 6. We simplify their identities in degree 5, and show that there are no new identities in degree 7. The Jordan case has not previously been studied: we find identities in degrees 3, 4, 5 and 6 which imply all the identities in degrees <= 6, and demonstrate the existence of further new identities in degree 7. our proofs depend on computer algebra: we use the representation theory of the symmetric group, the Hermite normal form of an integer matrix, the LLL algorithm for lattice basis reduction, and the Chinese remainder theorem. (C) 2009 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Algebra
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectLie superalgebras
dc.subjectSpecial Jordan superalgebras
dc.subjectNonhomogeneous subalgebras
dc.subjectPolynomial identities
dc.subjectComputational algebra
dc.titleNonhomogeneous subalgebras of Lie and special Jordan superalgebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución