dc.creatorGOLASINSKI, Marek
dc.creatorGONCALVES, Daciberg Lima
dc.date.accessioned2012-10-20T04:51:16Z
dc.date.accessioned2018-07-04T15:47:20Z
dc.date.available2012-10-20T04:51:16Z
dc.date.available2018-07-04T15:47:20Z
dc.date.created2012-10-20T04:51:16Z
dc.date.issued2009
dc.identifierTOPOLOGY AND ITS APPLICATIONS, v.156, n.17, p.2726-2734, 2009
dc.identifier0166-8641
dc.identifierhttp://producao.usp.br/handle/BDPI/30751
dc.identifier10.1016/j.topol.2009.08.004
dc.identifierhttp://dx.doi.org/10.1016/j.topol.2009.08.004
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1627390
dc.description.abstractLet G = Z/a x(mu) (Z/b x TL(2)(F(p))) and X(n) be an n-dimensional CW-complex with the homotopy type of the n-sphere. We determine the automorphism group Aut(G) and then compute the number of distinct homotopy types of spherical space forms with respect to free and cellular G-actions on all CW-complexes X(2dn - 1), where 2d is a period of G. Next, the group E(X(2dn - 1)/alpha) of homotopy self-equivalences of spherical space forms X(2dn - 1)/alpha, associated with such G-actions alpha on X(2dn - 1) are studied. Similar results for the rest of finite periodic groups have been obtained recently and they are described in the introduction. (C) 2009 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationTopology and Its Applications
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectAutomorphism group
dc.subjectCW-complex
dc.subjectFree and cellular G-action
dc.subjectGroup of homotopy self-equivalences
dc.subjectLyndon-Hochschild-Serre spectral sequence
dc.subjectSpherical space form
dc.titleSpherical space forms - Homotopy self-equivalences and homotopy types, the case of the groups Z/a x (Z/b x TL(2)(F(p)))
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución